Alice E. Shapley

University of California, Los Angeles, Los Angeles, California, United States

Are you Alice E. Shapley?

Claim your profile

Publications (169)742.69 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: In this paper we present the MOSFIRE Deep Evolution Field (MOSDEF) survey. The MOSDEF survey aims to obtain moderate-resolution (R=3000-3650) rest-frame optical spectra (~3700-7000 Angstrom) for ~1500 galaxies at 1.37<z<3.80 in three well-studied CANDELS fields: AEGIS, COSMOS, and GOODS-N. Targets are selected in three redshift intervals: 1.37<z<1.70, 2.09<z<2.61, and 2.95<z<3.80, down to fixed H_AB (F160W) magnitudes of 24.0, 24.5 and 25.0, respectively, using the photometric and spectroscopic catalogs from the 3D-HST survey. We target both strong nebular emission lines (e.g., [OII], Hbeta, [OIII], 5008, Halpha, [NII], and [SII]) and stellar continuum and absorption features (e.g., Balmer lines, Ca-II H and K, Mgb, 4000 Angstrom break). Here we present an overview of our survey, the observational strategy, the data reduction and analysis, and the sample characteristics based on spectra obtained during the first 24 nights. To date, we have completed 21 masks, obtaining spectra for 591 galaxies. For ~80% of the targets we identify and measure multiple emission or absorption lines. In addition, we confirm 55 additional galaxies, which were serendipitously detected. The MOSDEF galaxy sample includes unobscured star-forming, dusty star-forming, and quiescent galaxies and spans a wide range in stellar mass (~10^9-10^11.5 Msol) and star formation rate (~0-10^4 Msol/yr). The spectroscopically confirmed sample is roughly representative of an H-band limited galaxy sample at these redshifts. With its large sample size, broad diversity in galaxy properties, and wealth of available ancillary data, MOSDEF will transform our understanding of the stellar, gaseous, metal, dust, and black hole content of galaxies during the time when the universe was most active.
    12/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: We present the analysis of HST $J$- and $H$-band imaging for 29 galaxies on the star-forming main sequence at $z\sim2$, which have Adaptive Optics VLT SINFONI integral field spectroscopy from our SINS/zC-SINF program. The SINFONI H$\alpha$ data resolve the on-going star-formation and the ionized gas kinematics on scales of $1-2$ kpc; the near-IR images trace the galaxies' rest-frame optical morphologies and distributions of stellar mass in old stellar populations at a similar resolution. The global light profiles of most galaxies show disk-like properties well described by a single S\'ersic profile with $n\sim1$, with only $\sim15%$ requiring a high $n>3$ S\'ersic index, all more massive than $10^{10}M_\odot$. In bulge+disk fits, about $40%$ of galaxies have a measurable bulge component in the light profiles, with $\sim15%$ showing a substantial bulge-to-total ratio $B/T\ge0.3$. This is a lower limit to the frequency of $z\sim2$ massive galaxies with a developed bulge component in stellar mass because it could be hidden by dust and/or outshined by a thick actively star-forming disk component. The galaxies' rest-optical half-light radii range between $1-7$ kpc, with a median of 2.1 kpc, and lie slightly above the size-mass relation at these epochs reported in the literature. This is attributed to differences in sample selection and definitions of size and/or mass measurements. The $(u-g)_{rest}$ color gradient and scatter within individual $z\sim2$ massive galaxies with $\ge10^{11}M_\odot$ are as high as in $z=0$ low-mass, late-type galaxies, and are consistent with the high star-formation rates of massive $z\sim2$ galaxies being sustained at large galactocentric distances.
    11/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: We study the Lyα profiles of 36 spectroscopically detected Lyα-emitters (LAEs) at z ~ 2-3, using Keck MOSFIRE to measure systemic redshifts and velocity dispersions from rest-frame optical nebular emission lines. The sample has a median optical magnitude , and ranges from to , corresponding to rest-frame UV absolute magnitudes M UV –22 to M UV > –18.2. Dynamical masses range from M dyn < 1.3 × 108M ☉ to M dyn = 6.8 × 109M ☉, with a median value of M dyn = 6.3 × 108M ☉. Thirty of the 36 Lyα emission lines are redshifted with respect to the systemic velocity with at least 1σ significance, and the velocity offset with respect to systemic Δv Lyα is correlated with the -band magnitude, M UV, and the velocity dispersion measured from nebular emission lines with >3σ significance: brighter galaxies with larger velocity dispersions tend to have larger values of Δv Lyα. We also make use of a comparison sample of 122 UV-color-selected galaxies at z ~ 2, all with Lyα emission and systemic redshifts measured from nebular emission lines. Using the combined LAE and comparison samples for a total of 158 individual galaxies, we find that Δv Lyα is anti-correlated with the Lyα equivalent width with 7σ significance. Our results are consistent with a scenario in which the Lyα profile is determined primarily by the properties of the gas near the systemic redshift; in such a scenario, the opacity to Lyα photons in lower mass galaxies may be reduced if large gaseous disks have not yet developed and if the gas is ionized by the harder spectrum of young, low metallicity stars.
    The Astrophysical Journal 10/2014; 795(1):33. · 6.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We present results on the excitation properties of z~2.3 galaxies using early observations from the MOSFIRE Deep Evolution Field (MOSDEF) Survey. With its coverage of the full suite of strongrest-frame optical emission lines, MOSDEF provides an unprecedented view of the rest-frame optical spectra of a representative sample of distant star-forming galaxies. We investigate the locations of z~2.3 MOSDEF galaxies in multiple emission-line diagnostic diagrams. These include the [OIII]/Hb vs. [NII]/Ha (O3N2) and [OIII]/Hb vs. [SII]/Ha (O3S2) "BPT" diagrams, as well as the O_32 vs. R_23 (O32R23) excitation diagram. We recover the well-known offset in the star-forming sequence of high-redshift galaxies in the O3N2 BPT diagram relative to Sloan Digital Sky Survey star-forming galaxies. However, the shift for our rest-frame optically selected sample is less significant than for rest-frame-UV selected and emission-line selected galaxies at z~2. Furthermore, we find that the offset is mass-dependent, only appearing within the low-mass half of the z~2.3 MOSDEF sample, where galaxies are shifted towards higher [NII]/Ha at fixed [OIII]/Hb. Within the O3S2 and O32R23 diagrams, we find that z~2.3 galaxies are distributed like local ones, and therefore attribute the shift in the O3N2 BPT diagram to elevated N/O abundance ratios among lower-mass (M_*<10^10 M_sun) high-redshift galaxies. The variation in N/O ratios calls into question the use at high redshift of oxygen abundance indicators based on nitrogen lines, but the apparent invariance with redshift of the excitation sequence in the O32R23 diagram paves the way for using the combination of O_{32 and R_23 as an unbiased metallicity indicator over a wide range in redshift. This indicator will allow for an accurate characterization of the shape and normalization of the mass-metallicity relationship over more than 10 Gyr.
    09/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present results from the MOSFIRE Deep Evolution Field (MOSDEF) survey on rest-frame optical AGN identification and completeness at z~2.3. With our sample of 50 galaxies and 10 X-ray and IR-selected AGN with measured H-beta, [OIII], H-alpha, and [NII] emission lines, we investigate the location of AGN in the BPT, MEx (mass-excitation), and CEx (color-excitation) diagrams. We find that the BPT diagram works well to identify AGN at z~2.3 and that the z~0 AGN/star-forming galaxy classifications do not need to shift substantially at z~2.3 to robustly separate these populations. However, the MEx diagram likely suffers from contamination from star-forming galaxies at high redshift and fails to identify all of the AGN identified in the BPT diagram. The CEx diagram does not work well at high redshift. We further show that AGN samples selected using the BPT diagram have strong selection biases in terms of both host stellar mass and stellar population, in that AGN in low mass and/or high specific star formation rate galaxies can not be identified using the BPT diagram at either low or high redshift. These selection biases become increasingly severe at high redshift, such that optically-selected AGN samples at high redshift will necessarily be incomplete. We also find that the gas in the narrow-line region appears to be more enriched than gas in the host galaxy for at least some MOSDEF AGN. However, AGN at z~2 are generally less enriched than local AGN with the same host stellar mass.
    09/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We study the Lya profiles of 36 Lya-emitters (LAEs) at z~2-3, taking advantage of the sensitivity and efficiency of Keck MOSFIRE to measure systemic redshifts from rest-frame optical nebular emission lines. The galaxies were selected via narrowband imaging of their Lya emission, and have spectroscopic measurements of their Lya profiles from Keck LRIS. The LAE sample has a median optical magnitude R = 26.0, and ranges from R = 23 to R > 27, corresponding to rest-frame UV absolute magnitudes M_UV = -22 to M_UV > -18.2. The vast majority of Lya emission lines in this sample are redshifted with respect to the systemic velocity, and the velocity offset with respect to systemic dv_Lya is correlated with R-band magnitude, M_UV, and the velocity dispersion measured from nebular emission lines with >3 sigma significance: brighter galaxies with larger velocity dispersions tend to have larger values of dv_Lya. We also make use of a comparison sample of 122 UV-color-selected R < 25.5 galaxies at z~2, all with Lya emission and systemic redshifts measured from nebular emission lines. Using the combined LAE and comparison samples for a total of 158 individual galaxies, we find that dv_Lya is anti-correlated with the Lya equivalent width with 7 sigma significance. Our results are consistent with a scenario in which the Lya profile is determined primarily by the properties of the gas near the systemic redshift; in such a scenario, the opacity to Lya photons in lower mass galaxies may be reduced if large gaseous disks have not yet developed and if the gas is ionized by the harder spectrum of young, low metallicity stars. [Abridged]
    08/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: We present results on the z~2.3 mass-metallicity relation (MZR) using early observations from the MOSFIRE Deep Evolution Field (MOSDEF) survey. We use an initial sample of 87 star-forming galaxies with spectroscopic coverage of H\beta, [OIII]\lambda 5007, H\alpha, and [NII]\lambda 6584 rest-frame optical emission lines, and estimate the gas-phase oxygen abundance based on the N2 and O3N2 strong-line indicators. We find a positive correlation between stellar mass and metallicity among individual z~2.3 galaxies using both the N2 and O3N2 indicators. We also measure the emission-line ratios and corresponding oxygen abundances for composite spectra in bins of stellar mass. Among composite spectra, we find a monotonic increase in metallicity with increasing stellar mass, offset ~0.15-0.3 dex below the local MZR. When the sample is divided at the median star-formation rate (SFR), we do not observe significant SFR dependence of the z~2.3 MZR among either individual galaxies or composite spectra. We furthermore find that z~2.3 galaxies have metallicities ~0.1 dex lower at a given stellar mass and SFR than is observed locally. This offset suggests that high-redshift galaxies do not fall on the local "fundamental metallicity relation" among stellar mass, metallicity, and SFR, and may provide evidence of a phase of galaxy growth in which the gas reservoir is built up due to inflow rates that are higher than star-formation and outflow rates. However, robust conclusions regarding the gas-phase oxygen abundances of high-redshift galaxies await a systematic reappraisal of the application of locally calibrated metallicity indicators at high redshift.
    08/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present initial results of a large near-IR spectroscopic survey covering the 15 fields of the Keck Baryonic Structure Survey (KBSS) using the recently-commissioned MOSFIRE instrument on the Keck 1 10m telescope. We focus on 179 galaxies with redshifts 2.0 < z < 2.6, most of which have high-quality MOSFIRE spectra in both H and K-band atmospheric windows, allowing sensitive measurements of [OIII]4960,5008, H-beta, [NII]6585, and H-alpha emission lines. We show unambiguously that the locus of z~2.3 galaxies in the "BPT" nebular diagnostic diagram exhibits an almost entirely disjoint, yet similarly tight, relationship between the line ratios [NII]/Halpha and [OIII]/Hbeta as compared to local galaxies. We argue that the offset of the z~2.3 BPT locus relative to that at z~0 is caused primarily by higher excitation (driven by both higher ionization parameter and harder stellar ionizing radiation field) than applies to most local galaxies. Also unlike nearby counterparts, a z~2.3 galaxy's position along the BPT locus is surprisingly insensitive to gas-phase O/H. The observed emission line ratios are most easily reproduced by models in which the stellar ionizing radiation field has Teff=50000-60000 K, gas-phase O/H in the range 0.2 < Z/Zsun < 1.0, and gas-phase N/O close to solar. Such high sustained Teff are not easily produced by standard population synthesis models, but are expected if massive binaries and/or rapid stellar rotation are important for the evolution of main sequence O-stars in typical high-redshift galaxies. We assess the applicability of commonly-used strong line indices for estimating gas-phase metallicities of high redshift galaxies, as well as their likely systematic biases. The empirical correlation between M* and inferred metallicity (the "MZR") at z~2.3 is as tight as for local galaxy samples, but is offset to lower metallicity (at all M*) by ~0.35 dex (abridged)
    The Astrophysical Journal 05/2014; 795(2). · 6.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The MOSFIRE Deep Evolution Field (MOSDEF) survey is using the MOSFIRE instrument on the Keck I telescope to obtain more than 1700 rest-frame optical spectra of galaxies from redshift 1.5 to 3.6 over four years. We are using the first 200 spectra to investigate the prevalence of outflows measured in emission in broad components of the nebular emission lines. We create stacks of galaxies based on properties such as star formation rate, stellar mass, and star formation rate surface density (controlling for the presence of AGNs) in order to study how outflow strength depends on these factors. Additionally, we will stack spectra by redshift to understand how outflows change over time. We will present the results of two component (narrow and broad) fits to the nebular emission and compare to theoretical predictions of outflow efficiency.
    01/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present X-shooter observations of CASSOWARY 20 (CSWA 20), a star-forming (SFR ~6-7 Msol/yr) galaxy at z=1.433, magnified by a factor of 11.5 by the gravitational lensing produced by a massive foreground galaxy at z=0.741. We analysed the integrated physical properties of the HII regions of CSWA 20 using temperature- and density-sensitive emission lines. We find the abundance of oxygen to be ~1/7 of solar, while carbon is ~50 times less abundant than in the Sun. The unusually low C/O ratio may be an indication of a particularly rapid timescale of chemical enrichment. The wide wavelength coverage of X-shooter gives us access to five different methods for determining the metallicity of CSWA 20, three based on emission lines from HII regions and two on absorption features formed in the atmospheres of massive stars. All five estimates are in agreement, within the factor of ~2 uncertainty of each method. The interstellar medium of CSWA 20 only partially covers the star-forming region as viewed from our direction; in particular, absorption lines from neutrals and first ions are exceptionally weak. We find evidence for large-scale outflows of the interstellar medium (ISM) with speeds of up 750 km/s, similar to the values measured in other high-z galaxies sustaining much higher rates of star formation.
    Monthly Notices of the Royal Astronomical Society 11/2013; 440(2). · 5.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report the detection of ubiquitous powerful nuclear outflows in massive (> 10^11 Msun) z~2 star-forming galaxies (SFGs), which are plausibly driven by an Active Galactic Nucleus (AGN). The sample consists of the eight most massive SFGs from our SINS/zC-SINF survey of galaxy kinematics with the imaging spectrometer SINFONI, six of which have sensitive high-resolution adaptive optics (AO) assisted observations. All of the objects are disks hosting a significant stellar bulge. The spectra in their central regions exhibit a broad component in Halpha and forbidden [NII] and [SII] line emission, with typical velocity FWHM ~ 1500 km/s, [NII]/Halpha ratio ~ 0.6, and intrinsic extent of 2 - 3 kpc. These properties are consistent with warm ionized gas outflows associated with Type 2 AGN, the presence of which is confirmed via independent diagnostics in half the galaxies. The data imply a median ionized gas mass outflow rate of ~ 60 Msun/yr and mass loading of ~ 3. At larger radii, a weaker broad component is detected but with lower FWHM ~ 485 km/s and [NII]/Halpha ~ 0.35, characteristic for star formation-driven outflows as found in the lower-mass SINS/zC-SINF galaxies. The high inferred mass outflow rates and frequent occurrence suggest the nuclear outflows efficiently expel gas out of the centers of the galaxies with high duty cycles, and may thus contribute to the process of star formation quenching in massive galaxies. Larger samples at high masses will be crucial to confirm the importance and energetics of the nuclear outflow phenomenon, and its connection to AGN activity and bulge growth.
    The Astrophysical Journal 11/2013; 787(1). · 6.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We report matched resolution imaging spectroscopy of the CO 3-2 line (with the IRAM Plateau de Bure millimeter interferometer) and of the Hα line (with LUCI at the Large Binocular Telescope) in the massive z = 1.53 main-sequence galaxy EGS 13011166, as part of the "Plateau de Bure high-z, blue-sequence survey" (PHIBSS: Tacconi et al.). We combine these data with Hubble Space Telescope V-I-J-H-band maps to derive spatially resolved distributions of stellar surface density, star formation rate, molecular gas surface density, optical extinction, and gas kinematics. The spatial distribution and kinematics of the ionized and molecular gas are remarkably similar and are well modeled by a turbulent, globally Toomre unstable, rotating disk. The stellar surface density distribution is smoother than the clumpy rest-frame UV/optical light distribution and peaks in an obscured, star-forming massive bulge near the dynamical center. The molecular gas surface density and the effective optical screen extinction track each other and are well modeled by a "mixed" extinction model. The inferred slope of the spatially resolved molecular gas to star formation rate relation, N = dlogΣstar form/dlogΣmol gas, depends strongly on the adopted extinction model, and can vary from 0.8 to 1.7. For the preferred mixed dust-gas model, we find N = 1.14 ± 0.1.
    The Astrophysical Journal 07/2013; 773(1):68. · 6.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present Keck/MOSFIRE observations of the role of environment in the formation of galaxies at z~2. Using K-band spectroscopy of H-alpha and [N II] emission lines, we have analyzed the metallicities of galaxies within and around a z=2.3 protocluster discovered in the HS1700+643 field. Our main sample consists of 23 protocluster and 20 field galaxies with estimates of stellar masses and gas-phase metallicities based on the N2 strong-line metallicity indicator. With these data we have examined the mass-metallicity relation (MZR) with respect to environment at z~2. We find that field galaxies follow the well-established trend between stellar mass and metallicity, such that more massive galaxies have larger metallicities. The protocluster galaxies, however, do not exhibit a dependence of metallicity on mass, with the low-mass protocluster galaxies showing an enhancement in metallicity compared to field galaxies spanning the same mass range. A comparison with galaxy formation models suggests that the mass-dependent environmental trend we observed can be qualitatively explained in the context of the recycling of "momentum-driven" galaxy wind material. Accordingly, winds are recycled on a shorter timescale in denser environments, leading to an enhancement in metallicity at fixed mass for all but the most massive galaxies. Future hydrodynamical simulations of z~2 overdensities matching the one in the HS1700 field will be crucial for understanding the origin of the observed environmental trend in detail.
    The Astrophysical Journal 06/2013; 774(2). · 6.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present results from a survey for z~2.85 Lyman-Continuum (LyC) emission in the HS1549+1933 field and place constraints on the amount of ionizing radiation escaping from star-forming galaxies. Using a custom narrowband filter (NB3420) tuned to wavelengths just below the Lyman limit at z>=2.82, we probe the LyC spectral region of 49 Lyman break galaxies (LBGs) and 91 Lya-emitters (LAEs) spectroscopically confirmed at z>=2.82. Four LBGs and seven LAEs are detected in NB3420. Using V-band data probing the rest-frame non-ionizing UV, we observe that many NB3420-detected galaxies exhibit spatial offsets between their LyC and non-ionizing UV emission and are characterized by extremely blue NB3420-V colors, corresponding to low ratios of non-ionizing to ionizing radiation (F_UV/F_LyC) that are in tension with current stellar population synthesis models. We measure average values of F_UV/F_LyC for our LBG and LAE samples, correcting for foreground galaxy contamination and HI absorption in the IGM. We find (F_UV/F_LyC)_corr^LBG=82 +/- 45 and (F_UV/F_LyC)_corr^LAE=7.4 +/- 3.6. These flux-density ratios correspond respectively to relative LyC escape fractions of f_esc,rel^LBG=5-8% and f_esc,rel^LAE=18-49%, absolute LyC escape fractions of f_esc^LBG=1-2% and f_esc^LAE=5-15%, and a comoving LyC emissivity from star-forming galaxies of 8.8-15.0 x 10^24 ergs/s/Hz/Mpc^3. In order to study the differential properties of galaxies with and without LyC detections, we analyze narrowband Lya imaging and rest-frame near-infrared imaging, finding that while LAEs with LyC detections have lower Lya equivalent widths on average, there is no substantial difference in the rest-frame near-infrared colors of LBGs or LAEs with and without LyC detections. These preliminary results are consistent with an orientation-dependent model where LyC emission escapes through cleared paths in a patchy ISM.
    The Astrophysical Journal 06/2013; · 6.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present new high-precision measurements of the opacity of the intergalactic and circumgalactic medium (IGM, CGM) at =2.4. Using Voigt profile fits to the full Lyman alpha and Lyman beta forests in 15 high-resolution high-S/N spectra of hyperluminous QSOs, we make the first statistically robust measurement of the frequency of absorbers with HI column densities 14 < log(NHI) < 17.2. We also present the first measurements of the frequency distribution of HI absorbers in the volume surrounding high-z galaxies (the CGM, 300 pkpc), finding that the incidence of absorbers in the CGM is much higher than in the IGM. In agreement with Rudie et al. (2012), we find that there are fractionally more high-NHI absorbers than low-NHI absorbers in the CGM compared to the IGM, leading to a shallower power law fit to the CGM frequency distribution. We use these new measurements to calculate the total opacity of the IGM and CGM to hydrogen-ionizing photons, finding significantly higher opacity than most previous studies, especially from absorbers with log(NHI) < 17.2. Reproducing the opacity measured in our data as well as the incidence of absorbers with log(NHI) > 17.2 requires a broken power law parameterization of the frequency distribution with a break near log(NHI) ~ 15. We compute new estimates of the mean free path (mfp) to hydrogen-ionizing photons at z=2.4, finding mfp = 147 +- 15 Mpc when considering only IGM opacity. If instead, we consider photons emanating from a high-z star-forming galaxy and account for the local excess opacity due to the surrounding CGM of the galaxy itself, the mean free path is reduced to mfp = 121 +- 15 Mpc. These mfp measurements are smaller than recent estimates and should inform future studies of the metagalactic UV background and of ionizing sources at z~2-3.
    The Astrophysical Journal 04/2013; 769(2). · 6.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mapping Mg II resonance emission scattered by galactic winds offers a means to determine the spatial extent and density of the warm outflow. Using Keck/LRIS spectroscopy, we have resolved scattered Mg II emission to the east of 32016857, a star-forming galaxy at z =0.9392 with an outflow. The Mg II emission from this galaxy exhibits a P-Cygni profile, extends further than both the continuum and [O II] emission along the eastern side of the slit, and has a constant Doppler shift along the slit which does not follow the velocity gradient of the nebular [O II] emission. Using the Sobolev approximation, we derive the density of Mg+ ions at a radius of 12 to 18 kpc in the outflow. We model the ionization correction and find that much of the outflowing Mg is in Mg++. We estimate that the total mass flux could be as large as 330 - 500 solar masses per year, with the largest uncertainties coming from the depletion of Mg onto grains and the clumpiness of the warm outflow. We show that confining the warm clouds with a hot wind reduces the estimated mass flux of the warm outflow and indicates amass-loading factor near unity in the warm phase alone. Based on the high blue luminosities that distinguish 32016857 and TKRS 4389, described by Rubin et al. 2011, from other galaxies with P-Cygni emission, we suggest that, as sensitivity to diffuse emission improves, scattering halos may prove to be a generic property of star-forming galaxies at intermediate redshifts.
    The Astrophysical Journal 04/2013; 770(1). · 6.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present PHIBSS, the IRAM Plateau de Bure high-z blue sequence CO 3-2 survey of the molecular gas properties in massive, main-sequence star-forming galaxies (SFGs) near the cosmic star formation peak. PHIBSS provides 52 CO detections in two redshift slices at z ~ 1.2 and 2.2, with log(M *(M ☉)) ≥ 10.4 and log(SFR(M ☉/yr)) ≥ 1.5. Including a correction for the incomplete coverage of the M*-SFR plane, and adopting a "Galactic" value for the CO-H2 conversion factor, we infer average gas fractions of ~0.33 at z ~ 1.2 and ~0.47 at z ~ 2.2. Gas fractions drop with stellar mass, in agreement with cosmological simulations including strong star formation feedback. Most of the z ~ 1-3 SFGs are rotationally supported turbulent disks. The sizes of CO and UV/optical emission are comparable. The molecular-gas-star-formation relation for the z = 1-3 SFGs is near-linear, with a ~0.7 Gyr gas depletion timescale; changes in depletion time are only a secondary effect. Since this timescale is much less than the Hubble time in all SFGs between z ~ 0 and 2, fresh gas must be supplied with a fairly high duty cycle over several billion years. At given z and M *, gas fractions correlate strongly with the specific star formation rate (sSFR). The variation of sSFR between z ~ 0 and 3 is mainly controlled by the fraction of baryonic mass that resides in cold gas.
    The Astrophysical Journal 04/2013; 768(1):74. · 6.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We present a study of the prevalence, strength, and kinematics of ultraviolet FeII and MgII emission lines in 212 star-forming galaxies at z = 1 selected from the DEEP2 survey. We find FeII* emission in composite spectra assembled on the basis of different galaxy properties, indicating that FeII* emission is prevalent at z = 1. In these composites, FeII* emission is observed at roughly the systemic velocity. At z = 1, we find that the strength of FeII* emission is most strongly modulated by dust attenuation, and is additionally correlated with redshift, star-formation rate, and [OII] equivalent width, such that systems at higher redshifts with lower dust levels, lower star-formation rates, and larger [OII] equivalent widths show stronger FeII* emission. We detect MgII emission in at least 15% of the individual spectra and we find that objects showing stronger MgII emission have higher specific star-formation rates, smaller [OII] linewidths, larger [OII] equivalent widths, lower dust attenuations, and lower stellar masses than the sample as a whole. MgII emission strength exhibits the strongest correlation with specific star-formation rate, although we find evidence that dust attenuation and stellar mass also play roles in the regulation of MgII emission. Future integral field unit observations of the spatial extent of FeII* and MgII emission in galaxies with high specific star-formation rates, low dust attenuations, and low stellar masses will be important for probing the morphology of circumgalactic gas.
    The Astrophysical Journal 02/2013; 774(1). · 6.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Galaxy clusters constitute the most massive gravitationally bound structures in the universe. Galaxies found in the central, densest region of clusters at z < 1 are typically early- type galaxies with low star-formation rates (SFRs), while more active, late-type galaxies are preferentially located in the sparser edges of the cluster field. These trends demonstrate how environment plays a key role in the evolution of galaxies. Here we describe recent results from the newly commissioned MOSFIRE instrument at Keck Observatory on two protoclusters found in the HS 1700+643 (z = 2.30) and the SSA22a (z = 3.09) fields. Protoclusters at z > 2 are still in the process of forming and have not yet virialized, making them perfect for studying the “seeds” of the environmental trends that are seen locally. We have measured the rest-frame optical lines Hα, [N II], [S II]λλ6717,6732, [O III]λλ4959,5007, and Hβ for Q1700 and [O III]λλ4959,5007, Hβ , and [O II]λ3727 for SSA22a. This dataset has made possible a differential comparison of numerous physical properties (e.g. gas-phase metallicity, velocity dispersion, and electron density) for protocluster and “field” galaxies at roughly the same redshift. Based on our results, we present new findings on how environment affects the formation and evolution of galaxies at these early epochs.
    01/2013;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present PHIBSS, the IRAM Plateau de Bure high-z blue sequence CO 3-2 survey of the molecular gas properties in normal star forming galaxies (SFGs) near the cosmic star formation peak. PHIBSS provides 52 CO detections in two redshift slices at z~1.2 and 2.2, with log(M*(M_solar))>10.4 and log(SFR(M_solar/yr))>1.5. Including a correction for the incomplete coverage of the M*-SFR plane, we infer average gas fractions of ~0.33 at z~1.2 and ~0.47 at z~2.2. Gas fractions drop with stellar mass, in agreement with cosmological simulations including strong star formation feedback. Most of the z~1-3 SFGs are rotationally supported turbulent disks. The sizes of CO and UV/optical emission are comparable. The molecular gas - star formation relation for the z=1-3 SFGs is near-linear, with a ~0.7 Gyrs gas depletion timescale; changes in depletion time are only a secondary effect. Since this timescale is much less than the Hubble time in all SFGs between z~0 and 2, fresh gas must be supplied with a fairly high duty cycle over several billion years. At given z and M*, gas fractions correlate strongly with the specific star formation rate. The variation of specific star formation rate between z~0 and 3 is mainly controlled by the fraction of baryonic mass that resides in cold gas.
    11/2012;

Publication Stats

7k Citations
742.69 Total Impact Points

Institutions

  • 2008–2014
    • University of California, Los Angeles
      • • Department of Physics and Astronomy
      • • Division of Astronomy & Astrophysics
      Los Angeles, California, United States
  • 2013
    • Pierre and Marie Curie University - Paris 6
      • Institut d'astrophysique de Paris
      Lutetia Parisorum, Île-de-France, France
  • 2012
    • University of Toronto
      • Dunlap Institute for Astronomy and Astrophysics
      Toronto, Ontario, Canada
    • University of Western Australia
      • International Centre for Radio Astronomy Research (ICRAR)
      Perth City, Western Australia, Australia
  • 2001–2012
    • California Institute of Technology
      • Department of Astronomy
      Pasadena, California, United States
  • 2010
    • Max Planck Institute for Extraterrestrial Physics
      Arching, Bavaria, Germany
    • University of Southern California
      Los Angeles, California, United States
  • 2006–2008
    • Princeton University
      • Department of Astrophysical Sciences
      Princeton, New Jersey, United States
    • Harvard-Smithsonian Center for Astrophysics
      • Smithsonian Astrophysical Observatory
      Cambridge, Massachusetts, United States
  • 2005–2008
    • University of California, Berkeley
      • Department of Astronomy
      Berkeley, CA, United States