Ron Korstanje

The Jackson Laboratory, BHB, Maine, United States

Are you Ron Korstanje?

Claim your profile

Publications (62)379.09 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Glomerular disease often features altered histologic patterns of extracellular matrix (ECM). Despite this, the potential complexities of the glomerular ECM in both health and disease are poorly understood. To explore whether genetic background and sex determine glomerular ECM composition, we investigated two mouse strains, FVB and B6, using RNA microarrays of isolated glomeruli combined with proteomic glomerular ECM analyses. These studies, undertaken in healthy young adult animals, revealed unique strain- and sex-dependent glomerular ECM signatures, which correlated with variations in levels of albuminuria and known predisposition to progressive nephropathy. Among the variation, we observed changes in netrin 4, fibroblast growth factor 2, tenascin C, collagen 1, meprin 1-α, and meprin 1-β. Differences in protein abundance were validated by quantitative immunohistochemistry and Western blot analysis, and the collective differences were not explained by mutations in known ECM or glomerular disease genes. Within the distinct signatures, we discovered a core set of structural ECM proteins that form multiple protein-protein interactions and are conserved from mouse to man. Furthermore, we found striking ultrastructural changes in glomerular basement membranes in FVB mice. Pathway analysis of merged transcriptomic and proteomic datasets identified potential ECM regulatory pathways involving inhibition of matrix metalloproteases, liver X receptor/retinoid X receptor, nuclear factor erythroid 2-related factor 2, notch, and cyclin-dependent kinase 5. These pathways may therefore alter ECM and confer susceptibility to disease. Copyright © 2015 by the American Society of Nephrology.
    Journal of the American Society of Nephrology 04/2015; DOI:10.1681/ASN.2014040419 · 9.47 Impact Factor
  • Anna Reznichenko, Ron Korstanje
    [Show abstract] [Hide abstract]
    ABSTRACT: Platelet-activating factor (PAF) is a powerful proinflammatory mediator that displays an exceedingly diverse spectrum of biological effects. Importantly, PAF is shown to participate in a broad range of pathologic conditions. This review focuses on the role that PAF plays specifically in the pathophysiology of the kidney, the organ that is both a source and a target of PAF. Renal mesangial cells are responsible for glomerular PAF generation and, ultimately, are the victims of its excessive production. Mesangial pathology is widely acknowledged to reflect glomerular damage, which culminates in glomerulosclerosis and proteinuria. Therefore, modulation of mesangial cell responses would offer a pathophysiology-based therapeutic approach to prevent glomerular injury. However, the currently available therapeutic modalities do not allow for targeted intervention into these processes. A more profound understanding of the mechanisms that govern PAF metabolism and signaling in mesangial cells is important, because it could facilitate the quest for improved therapies for renal patients on the basis of PAF as a drug target. Copyright © 2015 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
    American Journal Of Pathology 02/2015; 185(4). DOI:10.1016/j.ajpath.2014.11.025 · 4.60 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Neutrophilic airway inflammation is one of the major hallmarks of chronic obstructive pulmonary disease (COPD), and is also seen in steroid resistant asthma. Neutrophilic airway inflammation can be induced by different stimuli including cigarette smoke (CS). Short-term exposure to CS induces neutrophilic airway inflammation both in mice and humans. Since not all individuals develop extensive neutrophilic airway inflammation upon smoking, we hypothesized that this CS-induced innate inflammation has a genetic component. This hypothesis was addressed by exposing 30 different inbred mouse strains to CS or control air for five consecutive days, followed by analysis of neutrophilic lung inflammation. By genome wide haplotype association mapping, we identified four susceptibility genes with a significant association to lung tissue levels of the neutrophil marker myeloperoxidase under basal conditions, and an additional 5 genes specifically associated with CS-induced tissue MPO levels. Analysis of the expression levels of the susceptibility genes by qRT-PCR revealed that 3 out of the 4 genes associated with CS-induced tissue MPO levels had CS-induced changes in gene expression levels that correlate with CS-induced airway inflammation. Most notably, CS exposure induces an increased expression of the coiled-coil domain containing gene, Ccdc93, in mouse strains susceptible for CS-induced airway inflammation while Ccdc93 expression was decreased upon CS exposure in non-susceptible mouse strains. In conclusion, this study shows that CS-induced neutrophilic airway inflammation has a genetic component and several genes contribute to the susceptibility for this response. Copyright © 2014, American Journal of Physiology - Lung Cellular and Molecular Physiology.
    AJP Lung Cellular and Molecular Physiology 01/2015; 308(7):ajplung.00118.2014. DOI:10.1152/ajplung.00118.2014 · 4.04 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Understanding the source of genetic variation in aging and using this variation to define the molecular mechanisms of healthy aging require deep and broad quantification of a host of physiological, morphological, and behavioral endpoints. The murine model is a powerful system in which to understand the relations across age-related phenotypes and to identify research models with variation in life span and health span. The Jackson Laboratory Nathan Shock Center of Excellence in the Basic Biology of Aging has performed broad characterization of aging in genetically diverse laboratory mice and has placed these data, along with data from several other major aging initiatives, into the interactive Mouse Phenome Database. The data may be accessed and analyzed by researchers interested in finding mouse models for specific aging processes, age-related health and disease states, and for genetic analysis of aging variation and trait covariation. We expect that by placing these data in the hands of the aging community that there will be (a) accelerated genetic analyses of aging processes, (b) discovery of genetic loci regulating life span, (c) identification of compelling correlations between life span and susceptibility for age-related disorders, and (d) discovery of concordant genomic loci influencing life span and aging phenotypes between mouse and humans. © The Author 2014. Published by Oxford University Press on behalf of The Gerontological Society of America.
    The Journals of Gerontology Series A Biological Sciences and Medical Sciences 12/2014; DOI:10.1093/gerona/glu223 · 4.98 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We sequenced the complete genome of the widely used C57L/J mouse inbred strain. With 40x average coverage we compared the C57L/J sequence with that of the C57BL/6J and identified many known, as well as novel private variants. This genome sequence adds another strain to the growing number of mouse inbred strains with complete genome sequences and is a valuable resource to the scientific community.
    G3-Genes Genomes Genetics 07/2014; 4(9). DOI:10.1534/g3.114.012997 · 2.51 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: FSGS is characterized by segmental scarring of the glomerulus and is a leading cause of kidney failure. Identification of genes causing FSGS has improved our understanding of disease mechanisms and points to defects in the glomerular epithelial cell, the podocyte, as a major factor in disease pathogenesis. Using a combination of genome-wide linkage studies and whole-exome sequencing in a kindred with familial FSGS, we identified a missense mutation R431C in anillin (ANLN), an F-actin binding cell cycle gene, as a cause of FSGS. We screened 250 additional families with FSGS and found another variant, G618C, that segregates with disease in a second family with FSGS. We demonstrate upregulation of anillin in podocytes in kidney biopsy specimens from individuals with FSGS and kidney samples from a murine model of HIV-1-associated nephropathy. Overexpression of R431C mutant ANLN in immortalized human podocytes results in enhanced podocyte motility. The mutant anillin displays reduced binding to the slit diaphragm-associated scaffold protein CD2AP. Knockdown of the ANLN gene in zebrafish morphants caused a loss of glomerular filtration barrier integrity, podocyte foot process effacement, and an edematous phenotype. Collectively, these findings suggest that anillin is important in maintaining the integrity of the podocyte actin cytoskeleton.
    Journal of the American Society of Nephrology 03/2014; 25(9). DOI:10.1681/ASN.2013090976 · 9.47 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A hallmark of aging-related organ deterioration is a dysregulated immune response characterized by pathologic leukocyte infiltration of affected tissues. Mechanisms and genes involved are as yet unknown. To identify genes associated with aging-related renal infiltration, we analyzed kidneys from aged mice (≥20 strains) for infiltrating leukocytes followed by Haplotype Association Mapping (HAM) analysis. Immunohistochemistry revealed CD45+ cell clusters (predominantly T and B cells) in perivascular areas coinciding with PNAd+ high endothelial venules and podoplanin+ lymph vessels indicative of tertiary lymphoid organs. Cumulative cluster size increased with age (analyzed at 6, 12 and 20 months). Based on the presence or absence of clusters in male and female mice at 20 months, HAM analysis revealed significant associations with loci on Chr1, Chr2, Chr8 and Chr14 in male mice, and with loci on Chr4, Chr7, Chr13 and Chr14 in female mice. Wisp2 (Chr2) showed the strongest association (P = 5.00×10-137) in male mice; Ctnnbip1 (P = 6.42×10-267) and Tnfrsf8 (P = 5.42×10-245) (both on Chr4) showed the strongest association in female mice. Both Wisp2 and Ctnnbip1 are part of the Wnt-signaling pathway and the encoded proteins were expressed within the tertiary lymphoid organs. In conclusion, this study revealed differential lymphocytic infiltration and tertiary lymphoid organ formation in aged mouse kidneys across different inbred mouse strains. HAM analysis identified candidate genes involved in the Wnt-signaling pathway that may be causally linked to tertiary lymphoid organ formation.
    PLoS ONE 03/2014; 9(3):e91850. DOI:10.1371/journal.pone.0091850 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A spontaneous mutation termed bilateral wasting kidneys (bwk) was identified in a colony of NONcNZO recombinant inbred mice. These mice exhibit a rapid increase of urinary albumin at an early age associated with glomerulosclerosis, interstitial nephritis, and tubular atrophy. The mutation was mapped to a location on chromosome 1 containing the Col4a3 and Col4a4 genes, for which mutations in the human orthologs cause the hereditary nephritis Alport syndrome. DNA sequencing identified a G-to-A mutation in the conserved GT splice donor of Col4a4 intron 30, resulting in skipping of exon 30 but maintaining the mRNA reading frame. Protein analyses showed that mutant collagen α3α4α5(IV) trimers were secreted and incorporated into the glomerular basement membrane (GBM), but levels were low, and GBM lesions typical of Alport syndrome were observed. Moving the mutation into the more renal damage-prone DBA/2J and 129S1/SvImJ backgrounds revealed differences in albuminuria and its rate of increase, suggesting an interaction between the Col4a4 mutation and modifier genes. This novel mouse model of Alport syndrome is the only one shown to accumulate abnormal collagen α3α4α5(IV) in the GBM, as also found in a subset of Alport patients. These mice will be valuable for testing potential therapies, for understanding abnormal collagen IV structure and assembly, and for gaining better insights into the mechanisms leading to Alport syndrome, and to the variability in the age of onset and associated phenotypes.Kidney International advance online publication, 12 February 2014; doi:10.1038/ki.2013.493.
    Kidney International 02/2014; 85(6). DOI:10.1038/ki.2013.493 · 8.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Renal aging is characterized by functional and structural changes like decreased glomerular filtration rate, and glomerular, tubular and interstitial damage. To gain insight in pathways involved in renal aging, we studied aged mouse strains and used genetic analysis to identify genes associated with aging phenotypes.
    PLoS ONE 01/2014; 9(10):e111308. DOI:10.1371/journal.pone.0111308 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In humans, a number of genetic factors have been linked to the development of fibrosis in a variety of different organs. Seeking a wider understanding of this observation in man is ethically important. There is mounting evidence suggesting that inbred mouse strains with different genetic backgrounds demonstrate variable susceptibility to a fibrotic injury. We performed a systematic review of the literature describing strain and organ specific response to injury in order to determine whether genetic susceptibility plays a role in fibrogenesis. Data were collected from studies that were deemed eligible for analysis based on set inclusion criteria, and findings were assessed in relation to strain of mouse, type of injury and organ of investigation. A total of 44 studies were included covering 21 mouse strains and focusing on fibrosis in the lung, liver, kidney, intestine and heart. There is evidence that mouse strain differences influence susceptibility to fibrosis and this appears to be organ specific. For instance, C57BL/6J mice are resistant to hepatic, renal and cardiac fibrosis but susceptible to pulmonary and intestinal fibrosis. However, BALB/c mice are resistant to pulmonary fibrosis but susceptible to hepatic fibrosis. Few studies have assessed the effect of the same injury stimulus in different organ systems using the same strains of mouse. Such mouse strain studies may prove useful in elucidating the genetic as well as epigenetic factors in humans that could help determine why some people are more susceptible to the development of certain organ specific fibrosis than others.
    Fibrogenesis & Tissue Repair 09/2013; 6(1):18. DOI:10.1186/1755-1536-6-18
  • Source
    Seungbum Choi, Ron Korstanje
    [Show abstract] [Hide abstract]
    ABSTRACT: The proprotein convertase subtilisin/kexins (PCSKs) are a serine endopeptidase family. PCSK members cleave amino acid residues and modulate the activity of precursor proteins. Evidence from patients and animal models carrying genetic alterations in PCSK members show that PCSK members are involved in various metabolic processes. These studies further revealed the molecular mechanism by which genetic alteration of some PCSK members impairs normal molecular and physiological functions, which in turn lead to cardiovascular disease. High-density lipoprotein (HDL) is anti-atherogenic as it removes excessive amount of cholesterol from blood and peripheral tissues. Several PCSK members are involved in HDL metabolism. PCSK3, PCSK5, and PCSK6 process two triglyceride lipase family members, endothelial lipase and lipoprotein lipase, which are important for HDL remodeling. Recent studies in our lab found evidence that PCSK1 and PCSK9 are also involved in HDL metabolism. A mouse model carrying an amino acid substitution in PCSK1 showed an increase in serum apolipoprotein A1 (APOA1) level. Another mouse model lacking PCSK9 showed a decrease in APOE-containing HDL. In this review, we summarize the role of the five PCSK members in lipid, glucose, and bile acid (BA) metabolism, each of which can influence HDL metabolism. We propose an integrative model in which PCSK members regulate HDL metabolism through various molecular mechanisms and metabolic processes and genetic variation in some PCSK members may affect the efficiency of reverse cholesterol transport. PCSK members are considered as attractive therapeutic targets. A greater understanding of the molecular and physiological functions of PCSK members will improve therapeutic strategies and drug efficacy for cardiovascular disease where PCSK members play critical role, with fewer adverse effects.
    09/2013; 1(1):27. DOI:10.1186/2050-7771-1-27
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Aging of the kidney is associated with renal damage, in particular mesangial matrix expansion (MME). Identifying the genes involved in this process will help to unravel the mechanisms of aging and aid in the design of novel therapeutic modalities aimed at prevention and regression. In this study, structural changes in glomeruli of 24 inbred mouse strains were characterized in male mice at 6, 12, and 20 months of age. Haplotype association mapping was used to determine genetic loci associated with the presence of MME at 20 months. This analysis identified a significant association with a 200-kb haplotype block on chromosome 6 containing Far2. Sequencing revealed that mouse strains with MME contain a 9-bp sequence in the 5' untranslated region of Far2 that is absent in most of the strains without MME. Real-time PCR showed a two-fold increase in the expression of Far2 in the kidneys of strains with the insert, and subsequent experiments performed in vitro with luciferase reporter vectors showed that this sequence difference causes differential expression of Far2. Overexpression of Far2 in a mouse mesangial cell line induced upregulation of platelet activating factor and the fibrotic marker TGF-β. This upregulation of MME-promoting factors may result, in part, from the FAR2-catalyzed reduction of fatty acyl-coenzyme A to fatty alcohols, which are possible precursors of platelet activating factor. Overall, these data suggest the identification of a novel pathway involved in renal aging that may yield therapeutic targets for reducing MME.
    Journal of the American Society of Nephrology 09/2013; 24(12). DOI:10.1681/ASN.2012080838 · 9.47 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Hypertension is one of the major risk factors for chronic kidney disease. Using quantitative trait loci analysis, we identified the gene of the F-BAR protein NOSTRIN in the center of an overlapping region in rat and human quantitative trait loci that are associated with hypertension. Immunohistochemical analysis revealed a predominantly podocytic expression pattern of NOSTRIN in human and mouse glomeruli. Further, NOSTRIN colocalizes with cell-cell contact-associated proteins β-catenin and zonula occludens-1 and interacts with the slit-membrane-associated adaptor protein CD2AP. In zebrafish larvae, knockdown of nostrin alters the glomerular filtration barrier function, inducing proteinuria and leading to ultrastructural morphological changes on the endothelial and epithelial side and of the glomerular basement membrane of the glomerular capillary loop. We conclude that NOSTRIN expression is an important factor for the integrity of the glomerular filtration barrier. Disease-related alteration of NOSTRIN expression may not only affect the vascular endothelium and, therefore, contribute to endothelial cell dysfunction but might also contribute to the development of podocyte disease and proteinuria.
    Hypertension 08/2013; 62(4). DOI:10.1161/HYPERTENSIONAHA.113.01882 · 7.63 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Studies in animals showed that PCSK9 is involved in HDL metabolism. We investigated the molecular mechanism by which PCSK9 regulates HDL cholesterol concentration and also whether Pcsk9 inactivation might affect cholesterol efflux capacity of serum and atherosclerotic fatty streak volume. Mass spectrometry and western blot were used to analyze the level of apolipoprotein E (APOE) and A1 (APOA1). A mouse model overexpressing human LDLR was used to test the effect of high levels of liver LDLR on the concentration of HDL cholesterol and APOE-containing HDL subfractions. Pcsk9 knockout males lacking LDLR and APOE were used to test whether LDLR and APOE are necessary for PCSK9-mediated HDL cholesterol regulation. We also investigated the effects of Pcsk9 inactivation on cholesterol efflux capacity of serum using THP-1 and J774.A1 macrophage foam cells and atherosclerotic fatty streak volume in the aortic sinus of Pcsk9 knockout males fed an atherogenic diet. APOE and APOA1 were reduced in the same HDL subfractions of Pcsk9 knockout and human LDLR transgenic male mice. In Pcsk9/Ldlr double-knockout mice, HDL cholesterol concentration was lower than in Ldlr knockout mice and higher than in wild-type controls. In Pcsk9/Apoe double-knockout mice, HDL cholesterol concentration was similar to that of Apoe knockout males. In Pcsk9 knockout males, THP-1 macrophage cholesterol efflux capacity of serum was reduced and the fatty streak lesion volume was similar to wild-type controls. In mice, LDLR and APOE are important factors for PCSK9-mediated HDL regulation. Our data suggest that, although LDLR plays a major role in PCSK9-mediated regulation of HDL cholesterol concentration, it is not the only mechanism and that, regardless of mechanism, APOE is essential. Pcsk9 inactivation decreases the HDL cholesterol concentration and cholesterol efflux capacity in serum, but does not increase atherosclerotic fatty streak volume.
    Lipids in Health and Disease 07/2013; 12(1):112. DOI:10.1186/1476-511X-12-112 · 2.31 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Normally, the glomerular filtration barrier almost completely excludes circulating albumin from entering the urine. Genetic variation and both pre- and postnatal environmental factors may affect albuminuria in humans. Here we determine whether glomerular gene expression in mouse strains with naturally occurring variations in albuminuria would allow identification of proteins deregulated in relatively 'leaky' glomeruli. Albuminuria increased in female B6 to male B6 to female FVB/N to male FVB/N mice, whereas the number of glomeruli/kidney was the exact opposite. Testosterone administration led to increased albuminuria in female B6 but not female FVB/N mice. A common set of 39 genes, many expressed in podocytes, were significantly differentially expressed in each of the four comparisons: male versus female B6 mice, male versus female FVB/N mice, male FVB/N versus male B6 mice, and female FVB/N versus female B6 mice. The transcripts encoded proteins involved in oxidation/reduction reactions, ion transport, and enzymes involved in detoxification. These proteins may represent novel biomarkers and even therapeutic targets for early kidney and cardiovascular disease.Kidney International advance online publication, 27 February 2013; doi:10.1038/ki.2013.45.
    Kidney International 02/2013; 83(6). DOI:10.1038/ki.2013.45 · 8.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In the past 15 years the quantitative trait locus (QTL) mapping approach has been applied to crosses between different inbred mouse strains to identify genetic loci associated with plasma HDL cholesterol levels. Although successful, a disadvantage of this method is low mapping resolution, as often, several hundred candidate genes fall within the confidence interval for each locus. Methods have been developed to narrow these loci by combining the data from the different crosses, but they rely on the accurate mapping of the QTL and the treatment of the data in a consistent manner. We collected 23 raw datasets used for the mapping of previously published HDL QTL and reanalyzed the data from each cross using a consistent method and the latest mouse genetic map. By utilizing this approach, we identified novel QTL and QTL that were mapped to the wrong part of chromosomes. Our new HDL QTL map allows for reliable combining of QTL data and candidate gene analysis, which we demonstrate by identifying Grin3a and Etv6, as candidate genes for QTL on chromosomes 4 and 6 respectively. In addition, we were able to narrow a QTL on Chr 19 down to five candidates.
    The Journal of Lipid Research 02/2013; DOI:10.1194/jlr.M033035 · 4.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Despite considerable progress understanding genes that affect the HDL particle, its function, and cholesterol content, genes identified to date explain only a small percentage of the genetic variation. We used N-ethyl-N-nitrosourea mutagenesis in mice to discover novel genes that affect HDL cholesterol levels. Two mutant lines (Hlb218 and Hlb320) with low HDL cholesterol levels were established. Causal mutations in these lines were mapped using linkage analysis: for line Hlb218 within a 12 Mbp region on Chr 10; and for line Hlb320 within a 21 Mbp region on Chr 7. High-throughput sequencing of Hlb218 liver RNA identified a mutation in Pla2g12b. The transition of G to A leads to a cysteine to tyrosine change and most likely causes a loss of a disulfide bridge. Microarray analysis of Hlb320 liver RNA showed a 7-fold downregulation of Hpn; sequencing identified a mutation in the 3' splice site of exon 8. Northern blot confirmed lower mRNA expression level in Hlb320 and did not show a difference in splicing, suggesting that the mutation only affects the splicing rate. In addition to affecting HDL cholesterol, the mutated genes also lead to reduction in serum non-HDL cholesterol and triglyceride levels. Despite low HDL cholesterol levels, the mice from both mutant lines show similar atherosclerotic lesion sizes compared to control mice. These new mutant mouse models are valuable tools to further study the role of these genes, their affect on HDL cholesterol levels, and metabolism.
    PLoS ONE 08/2012; 7(8):e43139. DOI:10.1371/journal.pone.0043139 · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We observed differences in atherosclerosis susceptibility in mouse inbred strains over the years as the health status of our animal rooms increased. Therefore, we investigated the effect of animal room health status on atherosclerosis susceptibility in different strains. As these data can also be used for genome-wide association mapping, we performed a mapping study and compared our results with previously found quantitative trait loci for atherosclerosis in mouse and humans. Males and females from 48 inbred strains were housed in 2 animal rooms with different health status and given an atherogenic diet. We compared atherosclerosis susceptibility between animal rooms and between sexes and found that susceptibility is dependent on both health status and sex. Subsequently, the data were used for associations with loci on the mouse genome using 63 222 single nucleotide polymorphism. Three loci in males and 4 loci in females were identified using the data from the low-health status room. No significant associations were identified using the data from the high-health status room. Health status influences susceptibility to atherosclerosis and suggests that microbiological pressure plays an important role in the development of atherosclerosis in many strains. As we were only able to map susceptibility loci using the data from the lower health status room, we argue that susceptibility under these conditions is determined by a few key loci, whereas in the higher health status room different mechanisms might play a role in the differences in atherosclerosis susceptibility between strains and we did not have enough power to map the loci that are involved.
    Arteriosclerosis Thrombosis and Vascular Biology 07/2012; 32(10):2380-6. DOI:10.1161/ATVBAHA.112.255703 · 5.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background Encapsulating peritoneal sclerosis (EPS) is a rare but devastating complication of peritoneal dialysis. The etiology is unclear, but genetic predisposition may be a contributing factor. We used adenovirus-mediated gene transfer of transforming growth factor (TGF) β1 to the peritoneum in four genetically distinct laboratory mouse strains to assess differences in fibrogenic response.Methods Mice from four genetic backgrounds (C57BL/6J, DBA/2J, C3H/HeJ and SJL/J) received an intraperitoneal injection of an adenovirus expressing TGFβ1 (AdTGFβ1) or control adenovirus (AdDL) and were assessed 4 and 10 days after infection. Submesothelial thickening, angiogenesis and gene expression were quantified from peritoneal tissue. Protein was extracted from omental tissue and assessed for collagen, E-cadherin and TGFβ signaling pathway proteins.ResultsThere was a graded response among the mouse strains to the peritoneal overexpression of TGFβ1. TGFβ1 induced a significant fibrogenic response in the C57BL/6J mice, whereas the SJL/J mice were resistant. The DBA/2J and the C3H/HeJ mice had intermediate responses. A similar graded response was seen in collagen protein levels in the omental tissue and in fibrosis-associated gene expression. TGFβ type 1 receptor and SMAD signaling pathways appeared to be intact in all the mouse strains.Conclusions There were significant differences in mouse strain susceptibility to peritoneal fibrosis, suggesting that genetic factors may play a role in the development of peritoneal fibrosis and possibly EPS. As early TGFβ1 signaling mechanisms appear to be intact, we hypothesize that fibrosis resistance in the SJL/J mice lies further down the wound-healing cascade or in an alternate, non-SMAD pathway.
    Nephrology Dialysis Transplantation 07/2012; DOI:10.1093/ndt/gfs289 · 3.49 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent developments in high-density genotyping and statistical analysis methods that have enabled genome-wide association studies in humans can also be applied to outbred mouse populations. Increased recombination in outbred populations is expected to provide greater mapping resolution than traditional inbred line crosses, improving prospects for identifying the causal genes. We carried out genome-wide association mapping by using 288 mice from a commercially available outbred stock; NMRI mice were genotyped with a high-density single-nucleotide polymorphism array to map loci influencing high-density lipoprotein cholesterol, systolic blood pressure, triglyceride levels, glucose, and urinary albumin-to-creatinine ratios. We found significant associations (P < 10(-5)) with high-density lipoprotein cholesterol and identified Apoa2 and Scarb1, both of which have been previously reported, as candidate genes for these associations. Additional suggestive associations (P < 10(-3)) identified in this study were also concordant with published quantitative trait loci, suggesting that we are sampling from a limited pool of genetic diversity that has already been well characterized. These findings dampen our enthusiasm for currently available commercial outbred stocks as genetic mapping resources and highlight the need for new outbred populations with greater genetic diversity. Despite the lack of novel associations in the NMRI population, our analysis strategy illustrates the utility of methods that could be applied to genome-wide association studies in humans.
    G3-Genes Genomes Genetics 02/2012; 2(2):167-74. DOI:10.1534/g3.111.001792 · 2.51 Impact Factor

Publication Stats

1k Citations
379.09 Total Impact Points


  • 2004–2015
    • The Jackson Laboratory
      BHB, Maine, United States
    • Wake Forest University
      Winston-Salem, North Carolina, United States
    • AstraZeneca
      Tukholma, Stockholm, Sweden
    • Harvard University
      Cambridge, Massachusetts, United States
    • University of Groningen
      • Department of Pathology and Laboratory Medicine
      Groningen, Groningen, Netherlands
  • 2013
    • University of Maine
      Orono, Minnesota, United States
  • 2012
    • University of North Carolina at Chapel Hill
      North Carolina, United States
  • 2011
    • Southwest Foundation For Biomedical Research
      San Antonio, Texas, United States
  • 2010
    • Sichuan University
      • Laboratory of Cardiovascular Diseases
      Hua-yang, Sichuan, China
  • 2005–2007
    • Universitair Medisch Centrum Groningen
      • Section of Medical Biology
      Groningen, Groningen, Netherlands
  • 2003
    • Harvard Medical School
      • Department of Medicine
      Boston, Massachusetts, United States
  • 2002
    • University of Washington Seattle
      • Department of Medicine
      Seattle, Washington, United States