Thorsten Naab

University of Bonn, Bonn, North Rhine-Westphalia, Germany

Are you Thorsten Naab?

Claim your profile

Publications (215)816.06 Total impact

  • Source
    Richard M. McDermid, Katherine Alatalo, Leo Blitz, Frederic Bournaud, Martin Bureau, Michele Cappellari, Alison F. Crocker, Roger L. Davies, Timothy A. Davis, P. T. de Zeeuw, [......], Davor Krajnovic, Harald Kuntschner, Raffaella Morganti, Thorsten Naab, Tom Oosterloo, Marc Sarzi, Nicholas Scott, Paolo Serra, Anne-Marie Weijmans, Lisa M. Young
    [Show abstract] [Hide abstract]
    ABSTRACT: We present the stellar population content of early-type galaxies from the Atlas3D survey. Using spectra integrated within apertures covering up to one effective radius, we apply two methods: one based on measuring line-strength indices and applying single stellar population (SSP) models to derive SSP-equivalent values of stellar age, metallicity, and alpha enhancement; and one based on spectral fitting to derive non-parametric star-formation histories, mass-weighted average values of age, metallicity, and half-mass formation timescales. Using homogeneously derived effective radii and dynamically-determined galaxy masses, we present the distribution of stellar population parameters on the Mass Plane (M_JAM, Sigma_e, R_maj), showing that at fixed mass, compact early-type galaxies are on average older, more metal-rich, and more alpha-enhanced than their larger counterparts. From non-parametric star-formation histories, we find that the duration of star formation is systematically more extended in lower mass objects. Assuming that our sample represents most of the stellar content of today's local Universe, approximately 50% of all stars formed within the first 2 Gyr following the big bang. Most of these stars reside today in the most massive galaxies (>10^10.5 M_sun), which themselves formed 90% of their stars by z~2. The lower-mass objects, in contrast, have formed barely half their stars in this time interval. Stellar population properties are independent of environment over two orders of magnitude in local density, varying only with galaxy mass. In the highest-density regions of our volume (dominated by the Virgo cluster), galaxies are older, alpha-enhanced and have shorter star-formation histories with respect to lower density regions.
    01/2015;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The SILCC project (SImulating the Life-Cycle of molecular Clouds) aims at a more self-consistent understanding of the interstellar medium (ISM) on small scales and its link to galaxy evolution. We simulate the evolution of the multi-phase ISM in a 500 pc x 500 pc x 10 kpc region of a galactic disc, with a gas surface density of $\Sigma_{_{\rm GAS}} = 10 \;{\rm M}_\odot/{\rm pc}^2$. The Flash 4.1 simulations include an external potential, self-gravity, magnetic fields, heating and radiative cooling, time-dependent chemistry of H$_2$ and CO considering (self-) shielding, and supernova (SN) feedback. We explore SN explosions at different (fixed) rates in high-density regions (peak), in random locations (random), in a combination of both (mixed), or clustered in space and time (clustered). Only random or clustered models with self-gravity (which evolve similarly) are in agreement with observations. Molecular hydrogen forms in dense filaments and clumps and contributes 20% - 40% to the total mass, whereas most of the mass (55% - 75%) is in atomic hydrogen. The ionised gas contributes <10%. For high SN rates (0.5 dex above Kennicutt-Schmidt) as well as for peak and mixed driving the formation of H$_2$ is strongly suppressed. Also without self-gravity the H$_2$ fraction is significantly lower ($\sim$ 5%). Most of the volume is filled with hot gas ($\sim$90% within $\pm$2 kpc). Only for random or clustered driving, a vertically expanding warm component of atomic hydrogen indicates a fountain flow. Magnetic fields have little impact on the final disc structure. However, they affect dense gas ($n\gtrsim 10\;{\rm cm}^{-3}$) and delay H$_2$ formation. We highlight that individual chemical species, in particular atomic hydrogen, populate different ISM phases and cannot be accurately accounted for by simple temperature-/density-based phase cut-offs.
    12/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We use hydrodynamical simulations in a $(256\;{\rm pc})^3$ periodic box to model the impact of supernova (SN) explosions on the multi-phase interstellar medium (ISM) for initial densities $n =$ 0.5-30 cm$^{-3}$ and SN rates 1-720 Myr$^{-1}$. We include radiative cooling, diffuse heating, and the formation of molecular gas using a chemical network. The SNe explode either at random positions, at density peaks, or both. We further present a model combining thermal energy for resolved and momentum input for unresolved SN remnants. Random driving at high SN rates results in hot gas ($T\gtrsim 10^6$ K) filling $> 90$% of the volume. This gas reaches high pressures ($10^4 < P/k_\mathrm{B} < 10^7$ K cm$^{-3}$) due to the combination of SN explosions in the hot, low density medium and confinement in the periodic box. These pressures move the gas from a two-phase equilibrium to the single-phase, cold branch of the cooling curve. The molecular hydrogen dominates the mass ($>50$%), residing in small, dense clumps. Such a model might resemble the dense ISM in high-redshift galaxies. Peak driving results in huge radiative losses, but disrupts the densest regions by construction, producing a filamentary ISM with virtually no hot gas, and a small molecular hydrogen mass fraction ($\ll 1$%). Varying the ratio of peak to random SNe yields ISM properties in between the two extremes, with a sharp transition for equal contributions (at $n = 3$ cm$^{-3}$). Modern galaxies have few SNe in density peak locations due to preceding stellar winds and ionisation. The velocity dispersion in HI remains $\lesssim 10$ km s$^{-1}$ in all cases. For peak driving the velocity dispersion in H$_\alpha$ can be as high as $70$ km s$^{-1}$ due to the contribution from young, embedded SN remnants.
    10/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We investigate the evolution of stellar population gradients from $z=2$ to $z=0$ in massive galaxies at large radii ($r > 2R_{\mathrm{eff}}$) using ten cosmological zoom simulations of halos with $6 \times 10^{12} M_{\odot} < M_{\mathrm{halo}} < 2 \times 10^{13}M_{\odot}$. The simulations follow metal cooling and enrichment from SNII, SNIa and AGB winds. We explore the differential impact of an empirical model for galactic winds that reproduces the mass-metallicity relation and its evolution with redshift. At larger radii the galaxies, for both models, become more dominated by stars accreted from satellite galaxies in major and minor mergers. In the wind model, fewer stars are accreted, but they are significantly more metal poor resulting in steep global metallicity ($\langle \nabla Z_{\mathrm{stars}} \rangle= -0.35$ dex/dex) and color (e.g. $\langle \nabla g-r \rangle = -0.13$ dex/dex) gradients in agreement with observations. In contrast, colour and metallicity gradients of the models without winds are inconsistent with observations. Age gradients are in general mildly positive at $z=0$ ($\langle \nabla Age_{\mathrm{stars}} \rangle= 0.04$ dex/dex) with significant differences between the models at higher redshift. We demonstrate that for the wind model, stellar accretion is steepening existing in-situ metallicity gradients by about 0.2 dex by the present day and helps to match observed gradients of massive early-type galaxies at large radii. Colour and metallicity gradients are significantly steeper for systems which have accreted stars in minor mergers, while galaxies with major mergers have relatively flat gradients, confirming previous results. This study highlights the importance of stellar accretion for stellar population properties of massive galaxies at large radii, which can provide important constraints for formation models.
    10/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Galactic archeology based on star counts is instrumental to reconstruct the past mass assembly of Local Group galaxies. The development of new observing techniques and data-reduction, coupled with the use of sensitive large field of view cameras, now allows us to pursue this technique in more distant galaxies exploiting their diffuse low surface brightness (LSB) light. As part of the Atlas3D project, we have obtained with the MegaCam camera at the Canada-France Hawaii Telescope extremely deep, multi--band, images of nearby early-type galaxies. We present here a catalog of 92 galaxies from the Atlas3D sample, that are located in low to medium density environments. The observing strategy and data reduction pipeline, that achieve a gain of several magnitudes in the limiting surface brightness with respect to classical imaging surveys, are presented. The size and depth of the survey is compared to other recent deep imaging projects. The paper highlights the capability of LSB--optimized surveys at detecting new prominent structures that change the apparent morphology of galaxies. The intrinsic limitations of deep imaging observations are also discussed, among those, the contamination of the stellar halos of galaxies by extended ghost reflections, and the cirrus emission from Galactic dust. The detection and systematic census of fine structures that trace the present and past mass assembly of ETGs is one of the prime goals of the project. We provide specific examples of each type of observed structures -- tidal tails, stellar streams and shells --, and explain how they were identified and classified. We give an overview of the initial results. The detailed statistical analysis will be presented in future papers.
    10/2014;
  • Source
    S. K. Walch, T. Naab
    [Show abstract] [Hide abstract]
    ABSTRACT: We investigate the early impact of single and binary supernova (SN) explosions on dense gas clouds with three-dimensional, high-resolution, hydrodynamic simulations. The effect of cloud structure, radiative cooling, and ionising radiation from the progenitor stars on the net input of kinetic energy, f_kin=E_kin/E_SN, thermal energy, f_therm=E_therm/E_SN, and gas momentum f_P=P/P_SN to the interstellar medium (ISM) is tested. For clouds with n=100 cm^{-3}, the momentum generating Sedov and pressure-driven snowplough phases are terminated early (~ 0.01 Myr) and radiative cooling limits the coupling to f_therm ~ 0.01, f_kin ~ 0.05, and f_P ~ 9, significantly lower than for the case without cooling. For pre-ionised clouds these numbers are only increased by ~ 50%, independent of the cloud structure. This only suffices to accelerate ~ 5% of the cloud to radial velocities >30km/s. A second SN might further enhance the coupling efficiencies if delayed past the Sedov phase of the first explosion. Such very low coupling efficiencies cast doubts on many galaxy-scale sub-resolution models for supernova feedback, most of which are validated a posteriori by qualitative agreement of galaxy properties with observations. Ionising radiation appears not to significantly enhance the immediate coupling of SNe to the surrounding gas as it drives the ISM into inert dense shells and cold clumps, a process which is unresolved in galaxy scale simulations. Our results support previous conclusions that supernovae might only drive a wind if a significant fraction explodes in low-density environments or if they are supported by processes other than ionising radiation.
    09/2014;
  • The Astrophysical Journal. 09/2014; 792(2):L37.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We combine molecular gas masses inferred from CO emission in 500 star forming galaxies (SFGs) between z=0 and 3, from the IRAM-COLDGASS, PHIBSS1/2 and other surveys, with gas masses derived from Herschel far-IR dust measurements in 512 galaxy stacks over the same stellar mass/redshift range. We constrain the scaling relations of molecular gas depletion time scale (tdepl) and gas fraction (Mmolgas/M*) with redshift, specific star formation rate (sSFR) and stellar mass (M*) in SFGs. The CO- and dust-based scaling relations agree remarkably well. This suggests that the CO-H2 mass conversion factor varies little within +-0.6 dex of the main sequence line, and less than a factor of 2 throughout this redshift range. We find that tdepl scales as (1+z)^-0.3 *(sSFR)^-0.5, with no M* dependence. The resulting steep redshift dependence of Mmolgas/M* ~ (1+z)^3 mirrors that of the sSFR and probably reflects the gas supply rate. The decreasing gas fractions at high M* are driven by the flattening of the SFR-M* relation. At constant M*, a larger sSFR is due to a combination of an increasing gas fraction and a decreasing depletion time scale. As a result galaxy integrated samples of the Mmolgas-SFR rate relation exhibit a super-linear slope, which increases with the range of sSFR. With these new relations it is now possible to determine Mmolgas with an accuracy of +-0.1 dex in relative terms, and +-0.2 dex including systematic uncertainties.
    09/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report on empirical trends between the dynamically determined stellar initial mass function (IMF) and stellar population properties for a complete, volume-limited sample of 260 early-type galaxies from the Atlas3D project. We study trends between our dynamically-derived IMF normalisation and absorption line strengths, and interpret these via single stellar population- (SSP-) equivalent ages, abundance ratios (measured as [alpha/Fe]), and total metallicity, [Z/H]. We find that old and alpha-enhanced galaxies tend to have on average heavier (Salpeter-like) mass normalisation of the IMF, but stellar population does not appear to be a good predictor of the IMF, with a large range of normalisation at a given population parameter. As a result, we find weak IMF-[alpha/Fe] and IMF-age correlations, and no significant IMF-[Z/H] correlation. The observed trends appear significantly weaker than those reported in studies that measure the IMF normalisation via low-mass star demographics inferred through stellar spectral analysis.
    08/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We use the Atlas3D sample to perform a study of the intrinsic shapes of early-type galaxies, taking advantage of the available combined photometric and kinematic data. Based on our ellipticity measurements from the Sloan Digital Sky Survey Data Release 7, and additional imaging from the Isaac Newton Telescope, we first invert the shape distribution of fast and slow rotators under the assumption of axisymmetry. The so-obtained intrinsic shape distribution for the fast rotators can be described with a Gaussian with a mean flattening of q=0.25 and standard deviation sigma_q = 0.14, and an additional tail towards rounder shapes. The slow rotators are much rounder, and are well described with a Gaussian with mean q = 0.63 and sigma_q =0.09. We then checked that our results were consistent when applying a different and independent method to obtain intrinsic shape distributions, by fitting the observed ellipticity distributions directly using Gaussian parametrisations for the intrinsic axis ratios. Although both fast and slow rotators are identified as early-type galaxies in morphological studies, and in many previous shape studies are therefore grouped together, their shape distributions are significantly different, hinting at different formation scenarios. The intrinsic shape distribution of the fast rotators shows similarities with the spiral galaxy population. Including the observed kinematic misalignment in our intrinsic shape study shows that the fast rotators are predominantly axisymmetric, with only very little room for triaxiality. For the slow rotators though there are very strong indications that they are (mildly) triaxial.
    08/2014;
  • Blue Waters Symposium 2014, Champaign, IL; 07/2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We analyze orbits of stars and dark matter out to three effective radii for 42 galaxies formed in cosmological zoom simulations. Box orbits always dominate at the centers and z-tubes become important at larger radii. We connect the orbital structure to the formation histories and specific features (e.g. disk, counter-rotating core, minor axis rotation) in two-dimensional kinematic maps. Globally, fast rotating galaxies with significant recent in-situ star formation are dominated by z-tubes. Slow rotators with recent mergers have significant box orbit and x-tube components. Rotation, quantified by the $\lambda_R$-parameter often originates from streaming motion of stars on z-tubes but sometimes from figure rotation. The observed anti-correlation of $h_3$ and $V_0 / \sigma$ in rotating galaxies can be connected to a dissipative formation history leading to high z-tube fractions. For galaxies with recent mergers in-situ formed stars, accreted stars and dark matter particles populate similar orbits. Dark matter particles have isotropic velocity dispersions. Accreted stars are typically radially biased ($\beta \approx 0.2 - 0.4$). In-situ stars become tangentially biased (as low as $\beta \approx -1.0$) if dissipation was relevant during the late assembly of the galaxy. We discuss the relevance of our analysis for integral field surveys and for constraining galaxy formation models.
    Monthly Notices of the Royal Astronomical Society 06/2014; 445(2). · 5.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present a novel implementation of cosmic rays (CR) in the magneto-hydrodynamic code FLASH. CRs are described as separate fluids with different energies. CR advection, energy dependent anisotropic diffusion with respect to the magnetic field and adiabatic losses to follow the evolution of spectra are taken into account. We present a first study of the transport and immediate (~150 kyr) dynamical impact of CRs on the turbulent magnetised interstellar medium around supernova remnants on scales up to 80 pc. CR diffusion quickly leads to an efficient acceleration of low-density gas (mainly perpendicular to the magnetic field) with accelerations up to two orders of magnitude above the thermal values. Peaked (at 1 GeV) CR injection spectra have a stronger impact on the dynamics than power-law spectra. For realistic magnetic field configurations low energy CRs (with smaller diffusion coefficients) distribute anisotropically with large spatial variations of a factor of ten and more. Adiabatic losses can change the local spectra perceptibly but do not have an integral effect on the dynamics at the spatial and temporal scales considered here. We discuss the potential global impact of CRs and anisotropic transport on the dynamical structure of the ISM and also detail the limitations of the model.
    06/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this paper we follow up on our previous detection of nuclear ionized outflows in the most massive (log(M*/Msun) >= 10.9) z~1-3 star-forming galaxies (Forster Schreiber et al.), by increasing the sample size by a factor of six (to 44 galaxies above log(M*/Msun) >= 10.9) from a combination of the SINS/zC-SINF, LUCI, GNIRS, and KMOS^3D spectroscopic surveys. We find a fairly sharp onset of the incidence of broad nuclear emission (FWHM in the Ha, [NII], and [SII] lines ~ 450-5300 km/s), with large [NII]/Ha ratios, above log(M*/Msun) ~ 10.9, with 66+/-15% of the galaxies in this mass range exhibiting this component. Broad nuclear components near and above the Schechter mass are similarly prevalent above and below the main sequence of star-forming galaxies, and at z~1 and ~2. The line ratios of the nuclear component are fit by excitation from active galactic nuclei (AGN), or by a combination of shocks and photoionization. The incidence of the most massive galaxies with broad nuclear components is at least as large as that of AGNs identified by X-ray, optical, infrared or radio indicators. The mass loading of the nuclear outflows is near unity. Our findings provide compelling evidence for powerful, high-duty cycle, AGN-driven outflows near the Schechter mass, and acting across the peak of cosmic galaxy formation.
    06/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present the correlations between stellar mass, star formation rate (SFR) and [NII]/Ha flux ratio as indicator of gas-phase metallicity for a sample of 222 galaxies at 0.8 < z < 2.6 and log(M*/Msun)=9.0-11.5 observed with LUCI at the LBT, and SINFONI and KMOS at the VLT. This sample provides a unique analysis of the mass-metallicity relation (MZR) over an extended redshift range using consistent data analysis techniques and strong-line metallicity indicator. Over the redshift range probed, we find a constant slope at the low-mass end of the MZR, which is however significantly steeper than seen in the local Universe. In this range, we can fully describe the redshift evolution of the MZR through the evolution of the characteristic turnover mass where the relation begins to flatten at the asymptotic metallicity. At fixed mass and redshift, our data do not show a correlation between the [NII]/Ha ratio and SFR, which disagrees with the 0.2-0.3dex offset in [NII]/Ha predicted by the "fundamental relation" between stellar mass, SFR and metallicity discussed in recent literature. However, the MZR evolution towards lower [NII]/Ha at earlier times does agree within the uncertainties with these predictions.
    05/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We analyze the formation histories of 19 galaxies from cosmological smoothed particle hydrodynamics zoom-in resimulations. We construct mock three-colour images and show that the models reproduce observed trends in the evolution of galaxy colours and morphologies. However, only a small fraction of galaxies contains bars. Many galaxies go through phases of central mass growth by in-situ star formation driven by gas-rich mergers or misaligned gas infall. These events lead to accretion of low-angular momentum gas to the centres and leave imprints on the distributions of z=0 stellar circularities, radii and metallicities as functions of age. Observations of the evolution of structural properties of samples of disc galaxies at z=2.5-0.0 infer continuous mass assembly at all radii. Our simulations can only explain this if there is a significant contribution from mergers or misaligned infall, as expected in a LambdaCDM universe. Quiescent merger histories lead to high kinematic disc fractions and inside-out growth, but show little central growth after the last `destructive' merger at z>1.5. For sufficiently strong feedback, as assumed in our models, a moderate amount of merging does not seem to be a problem for the z=0 disc galaxy population, but may rather be a requirement. The average profiles of simulated disc galaxies agree with observations at z>=1.5. At z<=1, there is too much growth in size and too little growth in central mass, possibly due to the under-abundance of bars. The discrepancies may partly be caused by differences between the star formation histories of the simulations and those assumed for observations.
    Monthly Notices of the Royal Astronomical Society 04/2014; 441(4). · 5.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We study how feedback influences baryon infall onto galaxies using cosmological, zoom-in simulations of haloes with present mass $\mathrm{M}_{\mathrm{vir}}=6.9\times10^{11} \mathrm{M}_{\odot}$ to $1.7\times10^{12} \mathrm{M}_{\odot}$. Starting at $z=4$ from identical initial conditions, implementations of weak and strong stellar feedback produce bulge- and disc-dominated galaxies, respectively. Strong feedback favours disc formation: (1) because conversion of gas into stars is suppressed at early times, as required by abundance matching arguments, resulting in flat star formation histories and higher gas fractions; (2) because $50\%$ of the stars form ${\it in}$ ${\it situ}$ from recycled disc gas with angular momentum only weakly related to that of the $z=0$ dark halo; (3) because late-time gas accretion is typically an order of magnitude stronger and has higher specific angular momentum, with recycled gas dominating over primordial infall; (4) because $25-30\%$ of the total accreted gas is ejected entirely before $z\sim1$, removing primarily low angular momentum material which enriches the nearby inter-galactic medium. Most recycled gas roughly conserves its angular momentum, but material ejected for long times and to large radii can gain significant angular momentum before re-accretion. These processes lower galaxy formation efficiency in addition to promoting disc formation.
    Monthly Notices of the Royal Astronomical Society 03/2014; 443(3). · 5.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present measurements of the star formation rate (SFR) in the early-type galaxies (ETGs) of the ATLAS3D sample, based on Wide-field Infrared Survey Explorer (WISE) 22um and Galaxy Evolution Explorer (GALEX) far-ultraviolet emission. We combine these with gas masses estimated from 12CO and HI data in order to investigate the star formation efficiency (SFE) in a larger sample of ETGs than previously available. We first recalibrate (based on WISE data) the relation between old stellar populations (traced at Ks-band) and 22um luminosity, allowing us to remove the contribution of 22um emission from circumstellar dust. We then go on to investigate the position of ETGs on the Kennicutt-Schmidt (KS) relation. Molecular gas-rich ETGs have comparable star formation surface densities to normal spiral galaxy centres, but they lie systematically offset from the KS relation, having lower star formation efficiencies by a factor of ~2.5 (in agreement with other authors). This effect is driven by galaxies where a substantial fraction of the molecular material is in the rising part of the rotation curve, and shear is high. We show here for the first time that although the number of stars formed per unit gas mass per unit time is lower in ETGs, it seems that the amount of stars formed per free-fall time is approximately constant. The scatter around this dynamical relation still correlates with galaxy properties such as the shape of the potential in the inner regions. This leads us to suggest that dynamical properties (such as shear or the global stability of the gas) may be important second parameters that regulate star formation and cause much of the scatter around star-formation relations.
    03/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We employ cosmological hydrodynamical simulations to investigate the effects of AGN feedback on the formation of massive galaxies with present-day stellar masses of $M_{stel} > 8.9 \times 10^{10} M_{sun}$. Using smoothed particle hydrodynamics simulations with a pressure-entropy formulation that allows an improved treatment of contact discontinuities and fluid mixing, we run three sets of simulations of 20 halos with different AGN feedback models: (1) no feedback, (2) thermal feedback, and (3) mechanical and radiation feedback. We assume that seed black holes are present at early cosmic epochs at the centre of emerging dark matter halos and trace their mass growth via gas accretion and mergers with other black holes. Both feedback models successfully recover the observed M_BH - sigma relation and black hole-to-stellar mass ratio for simulated central early-type galaxies. The baryonic conversion efficiencies are reduced by a factor of two compared to models without any AGN feedback at all halo masses. However, massive galaxies simulated with thermal AGN feedback show a factor of ~ 10-100 higher X-ray luminosities than observed. The mechanical and radiation feedback model reproduces the observed correlation between X-ray luminosities and velocity dispersion, e.g. for galaxies with sigma=200 km/s, the X-ray luminosity is reduced from $10^{42}$ erg/s to $10^{40}$ erg/s. It also efficiently suppresses late time star formation, reducing the specific star formation rate from $10^{-10.5}$ $\rm yr^{-1}$ to $10^{-14}$ $\rm yr^{-1}$ on average and resulting in quiescent galaxies since z=2, whereas the thermal feedback model shows higher late time in-situ star formation rates than observed.
    03/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present the smoothed-particle hydrodynamics implementation SPHGal which incorporates several recent developments into the GADGET code. This includes a pressure-entropy formulation of SPH with a Wendland kernel, a higher order estimate of velocity gradients, a modified artificial viscosity switch with a strong limiter, and artificial conduction of thermal energy. We conduct a series of idealized hydrodynamic tests and show that while the pressure-entropy formulation is ideal for resolving fluid mixing at contact discontinuities, it performs conspicuously worse when strong shocks are involved due to the large entropy discontinuities. Including artificial conduction at shocks greatly improves the results. The Kelvin-Helmholtz instability can be resolved properly and dense clouds in the blob test dissolve qualitatively in agreement with other improved SPH implementations. We further perform simulations of an isolated Milky Way like disk galaxy and find a feedback-induced instability developing if too much artificial viscosity is introduced. Our modified artificial viscosity scheme not only prevents this instability but also shows efficient shock capturing capability in the Sedov explosion test. We also investigate the star formation rate and the galactic outflow of the MW disk as well as a gas-rich disk. The star formation rates vary slightly for different SPH schemes while the mass loading is quite sensitive to the SPH scheme. The galactic outflows are reduced due to more efficient fluid mixing. Finally, we compare the accretion behavior of of hot halo gas. The formation of cold blobs, an artifact of simple SPH implementations, can be eliminated efficiently with proper fluid mixing, either by conduction and/or by using a pressure-entropy formulation. Based on the performed tests we consider the SPHGal hydrodynamics sufficiently accurate for galaxy formation simulations.
    Monthly Notices of the Royal Astronomical Society 02/2014; 443(2). · 5.23 Impact Factor

Publication Stats

5k Citations
816.06 Total Impact Points

Institutions

  • 2012
    • University of Bonn
      • Argelander-Institute of Astronomy
      Bonn, North Rhine-Westphalia, Germany
    • University of Washington Seattle
      • Department of Astronomy
      Seattle, Washington, United States
  • 2011–2012
    • University of Oxford
      • Department of Physics
      Oxford, ENG, United Kingdom
    • Max Planck Institute for Astrophysics
      Arching, Bavaria, Germany
    • Leiden University
      • Leiden Observartory
      Leiden, South Holland, Netherlands
  • 2007–2009
    • Ludwig-Maximilians-University of Munich
      München, Bavaria, Germany
  • 2003–2004
    • Cancer Research UK Cambridge Institute
      Cambridge, England, United Kingdom
  • 1999–2002
    • Max Planck Institute for Astronomy
      Heidelburg, Baden-Württemberg, Germany
  • 2001
    • University of Cambridge
      • Institute of Astronomy
      Cambridge, England, United Kingdom