B. Fullerton

Harvard Medical School, Boston, Massachusetts, United States

Are you B. Fullerton?

Claim your profile

Publications (18)45.51 Total impact

  • [show abstract] [hide abstract]
    ABSTRACT: To report the early outcomes for very young children with medulloblastoma or supratentorial primitive neuroectodermal tumor (SPNET) treated with upfront chemotherapy followed by 3-dimensional proton radiation therapy (3D-CPT). All patients aged <60 months with medulloblastoma or SPNET treated with chemotherapy before 3D-CPT from 2002 to 2010 at our institution were included. All patients underwent maximal surgical resection, chemotherapy, and adjuvant 3D-CPT with either craniospinal irradiation followed by involved-field radiation therapy or involved-field radiation therapy alone. Fifteen patients (median age at diagnosis, 35 months) were treated with high-dose chemotherapy and 3D-CPT. Twelve of 15 patients had medulloblastoma; 3 of 15 patients had SPNET. Median time from surgery to initiation of radiation was 219 days. Median craniospinal irradiation dose was 21.6 Gy (relative biologic effectiveness); median boost dose was 54.0 Gy (relative biologic effectiveness). At a median of 39 months from completion of radiation, 1 of 15 was deceased after a local failure, 1 of 15 had died from a non-disease-related cause, and the remaining 13 of 15 patients were alive without evidence of disease recurrence. Ototoxicity and endocrinopathies were the most common long-term toxicities, with 2 of 15 children requiring hearing aids and 3 of 15 requiring exogenous hormones. Proton radiation after chemotherapy resulted in good disease outcomes for a small cohort of very young patients with medulloblastoma and SPNET. Longer follow-up and larger numbers of patients are needed to assess long-term outcomes and late toxicity.
    International journal of radiation oncology, biology, physics 06/2013; · 4.59 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: PURPOSE: Atypical teratoid/rhabdoid tumor (AT/RT) is an uncommon and aggressive tumor that often affects infants. Irradiation improves survival but has traditionally been avoided in patients under the age of 3 due to the increasing risk of neurocognitive side effects. We report the first cohort of AT/RT patients treated with proton therapy. METHODS AND MATERIALS: All patients with AT/RT treated at Massachusetts General Hospital (MGH) Frances H. Burr Proton Beam Therapy Benter between July 2004 and November 2011 were included in this study. All patients were treated with 3-dimensional conformal proton therapy (3D-CPT). RESULTS: Ten consecutive patients of a median 2.3 years of age and with a median follow-up of 27.3 months (range, 11.3-99.4 months) were identified. Two patients suffered distant relapse; 1 patient was successfully treated with involved field irradiation and chemotherapy, while the second patient died of disease. At last follow-up, 9 patients were alive without evidence of disease. Proton radiation demonstrated increasing sparing of the cerebrum, temporal lobe, cochlea, and hypothalamus. CONCLUSIONS: Initial clinical outcomes with proton therapy are favorable. The advantages of proton therapy are particularly suited to the treatment of AT/RT, a tumor that often requires irradiation treatment at an age when avoiding irradiation to healthy tissues is most desirable.
    International journal of radiation oncology, biology, physics 03/2013; · 4.59 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: To calculated projected second tumor rates and dose to organs at risk (OAR) in patients with benign intracranial meningioma (BM), according to dosimetric comparisons between proton radiotherapy (PRT) and photon radiotherapy (XRT) treatment plans. Ten patients with BM treated at Massachusetts General Hospital during 2006-2010 with PRT were replanned with XRT (intensity-modulated or three-dimensional conformal radiotherapy), optimizing dose to the tumor while sparing OAR. Total dose was 54 Gy in 1.8 Gy per fraction for all plans. We calculated equivalent uniform doses, normal tissue complication probabilities, and whole brain-based estimates of excess risk of radiation-associated intracranial second tumors. Excess risk of second tumors was significantly lower among PRT compared with XRT plans (1.3 vs. 2.8 per 10,000 patients per year, p < 0.002). Mean equivalent uniform doses were lower among PRT plans for the whole brain (19.0 vs. 22.8 Gy, p < 0.0001), brainstem (23.8 vs. 35.2 Gy, p = 0.004), hippocampi (left, 13.5 vs. 25.6 Gy, p < 0.0001; right, 7.6 vs. 21.8 Gy, p = 0.001), temporal lobes (left, 25.8 vs. 34.6 Gy, p = 0.007; right, 25.8 vs. 32.9 Gy, p = 0.008), pituitary gland (29.2 vs. 37.0 Gy, p = 0.047), optic nerves (left, 28.5 vs. 33.8 Gy, p = 0.04; right, 25.1 vs. 31.1 Gy, p = 0.07), and cochleas (left, 12.2 vs. 15.8 Gy, p = 0.39; right,1.5 vs. 8.8 Gy, p = 0.01). Mean normal tissue complication probability was <1% for all structures and not significantly different between PRT and XRT plans. Compared with XRT, PRT for BM decreases the risk of RT-associated second tumors by half and delivers significantly lower doses to neurocognitive and critical structures of vision and hearing.
    International journal of radiation oncology, biology, physics 01/2012; 83(4):e495-500. · 4.59 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: To report early clinical outcomes for children with central nervous system (CNS) germ cell tumors treated with protons; to compare dose distributions for intensity-modulated photon radiotherapy (IMRT), three-dimensional conformal proton radiation (3D-CPT), and intensity-modulated proton therapy with pencil beam scanning (IMPT) for whole-ventricular irradiation with and without an involved-field boost. All children with CNS germinoma or nongerminomatous germ cell tumor who received treatment at the Massachusetts General Hospital between 1998 and 2007 were included in this study. The IMRT, 3D-CPT, and IMPT plans were generated and compared for a representative case. Twenty-two patients were treated with 3D-CPT. At a median follow-up of 28 months, there were no CNS recurrences; 1 patient had a recurrence outside the CNS. Local control, progression-free survival, and overall survival rates were 100%, 95%, and 100%, respectively. Comparable tumor volume coverage was achieved with IMRT, 3D-CPT, and IMPT. Substantial normal tissue sparing was seen with any form of proton therapy as compared with IMRT. The use of IMPT may yield additional sparing of the brain and temporal lobes. Preliminary disease control with proton therapy compares favorably to the literature. Dosimetric comparisons demonstrate the advantage of proton radiation over IMRT for whole-ventricle radiation. Superior dose distributions were accomplished with fewer beam angles utilizing 3D-CPT and scanned protons. Intensity-modulated proton therapy with pencil beam scanning may improve dose distribution as compared with 3D-CPT for this treatment.
    International journal of radiation oncology, biology, physics 05/2010; 79(1):121-9. · 4.59 Impact Factor
  • Fuel and Energy Abstracts 01/2010; 78(3).
  • [show abstract] [hide abstract]
    ABSTRACT: To report preliminary clinical outcomes for pediatric patients treated with proton beam radiation for intracranial ependymoma and compare the dose distributions of intensity-modulated radiation therapy with photons (IMRT), three-dimensional conformal proton radiation, and intensity-modulated proton radiation therapy (IMPT) for representative patients. All children with intracranial ependymoma confined to the supratentorial or infratentorial brain treated at the Francis H. Burr Proton Facility and Harvard Cyclotron between November 2000 and March 2006 were included in this study. Seventeen patients were treated with protons. Proton, IMRT, and IMPT plans were generated with similar clinical constraints for representative infratentorial and supratentorial ependymoma cases. Tumor and normal tissue dose-volume histograms were calculated and compared. At a median follow-up of 26 months from the start date of radiation therapy, local control, progression-free survival, and overall survival rates were 86%, 80%, and 89%, respectively. Subtotal resection was significantly associated with decreased local control (p = 0.016). Similar tumor volume coverage was achieved with IMPT, proton therapy, and IMRT. Substantial normal tissue sparing was seen with proton therapy compared with IMRT. Use of IMPT will allow for additional sparing of some critical structures. Preliminary disease control with proton therapy compares favorably with the literature. Dosimetric comparisons show the advantage of proton radiation compared with IMRT in the treatment of ependymoma. Further sparing of normal structures appears possible with IMPT. Superior dose distributions were accomplished with fewer beam angles with the use of protons and IMPT.
    International Journal of Radiation OncologyBiologyPhysics 08/2008; 71(4):979-86. · 4.52 Impact Factor
  • International Journal of Radiation Oncology Biology Physics - INT J RADIAT ONCOL BIOL PHYS. 01/2007; 69(3).
  • International Journal of Radiation Oncology Biology Physics - INT J RADIAT ONCOL BIOL PHYS. 01/2007; 69(3).
  • International Journal of Radiation Oncology Biology Physics - INT J RADIAT ONCOL BIOL PHYS. 01/2007; 69(3).
  • [show abstract] [hide abstract]
    ABSTRACT: To report late neurologic toxicity rates and clinical outcomes for patients treated with high dose fractionated radiation therapy using three-dimensional treatment planning and combined proton and photon beams to portions of the cauda equina (L2-coccyx). Medical records of 53 patients treated to fields encompassing the cauda equina were reviewed for the onset of neurologic symptoms in the absence of local failure. All doses were normalized to equivalent dose delivered in 2-Gy fractions. Median cauda dose was 65.8 cobalt Gray equivalents (CGE) (range, 31.9-85.1). Median follow-up was 87 months (range, 14-217 months). Nineteen patients experienced local recurrences, and 13 others had neurologic toxicity. A total of 54% (i.e., 7/13) of the toxicities occurred 5 years or more after treatment. Median caudal dose was 73.7 CGE in the group with neurologic toxicity, and 55.6 CGE in those without. On multivariate actuarial analysis, cauda dose and gender were statistically significant for neurotoxicity at p = 0.002 and p = 0.017, respectively. The estimated tolerance doses 5 years from treatment, TD 5/5 and TD 50/5, were 55 CGE and 72 CGE, respectively, for males and 67 CGE and 84 CGE for females. The tolerance doses were about 8 CGE lower when estimated at 10 years from treatment. Disease-free survival rates at 5 and 10 years were 66% and 53%, respectively. This study suggests that the probability of neurotoxicity is a relatively steep function of dose to cauda equina (slope gamma50 = approximately 3). The cauda equina tolerance is greater for females than males by about 11 CGE (at 2 CGE per fraction). Extended follow-up is necessary to accurately assess neurologic damage and then differentiate that phenomenon from local recurrence; the traditional 5-year assessment has limited meaning in this population. Local control remains an issue for these patients, even with the radical doses used.
    International Journal of Radiation OncologyBiologyPhysics 02/2006; 64(1):251-7. · 4.52 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Over 85% of pediatric orbital rhabdomyosarcoma (RMS) are cured with combined chemotherapy and radiation. However, the late effects of photon radiation compromise function and cosmetic outcome. Proton radiation can provide excellent tumor dose distributions while sparing normal tissues better than photon irradiation. Conformal 3D photon and proton radiotherapy plans were generated for children treated with proton irradiation for orbital RMS at Massachusetts General Hospital. Dose-volume histograms (90%, 50%, 10%) were generated and compared for important orbital and central nervous system structures. Average percentages of total dose prescribed were calculated based on the 3 dose-volume histogram levels for normal orbital structures for both the proton and photon plans. The percent of normal tissue spared by using protons was calculated. Seven children were treated for orbital rhabdomyosarcoma with proton irradiation and standard chemotherapy. The median follow-up is 6.3 years (range, 3.5-9.7 years). Local and distant controls compare favorably to those in other published accounts. There was an advantage in limiting the dose to the brain, pituitary, hypothalamus, temporal lobes, and ipsilateral and contralateral orbital structures. Tumor size and location affect the degree of sparing of normal structures. Fractionated proton radiotherapy is superior to 3D conformal photon radiation in the treatment of orbital RMS. Proton therapy maintains excellent tumor coverage while reducing the radiation dose to adjacent normal structures. Proton radiation therapy minimizes long-term side effects.
    International Journal of Radiation OncologyBiologyPhysics 12/2005; 63(4):1161-8. · 4.52 Impact Factor
  • International Journal of Radiation Oncology Biology Physics - INT J RADIAT ONCOL BIOL PHYS. 01/2005; 63.
  • [show abstract] [hide abstract]
    ABSTRACT: To determine the temporal lobe (TL) damage rate in 96 patients treated with high-dose proton and photon irradiation for chordomas and chondrosarcomas of the base of the skull. The records of 96 consecutive patients treated at Massachusetts General Hospital (MGH) and Harvard Cyclotron Laboratory (HCL) between June 1984 and 1993, for chordomas and chondrosarcomas of the base of the skull were reviewed. All the patients had undergone some degree of resection of the tumor prior to radiation therapy. Seventy-five patients were classified as "primary tumors" and 21 as recurrent or regrowing tumors after one or more surgical procedures. All the patients were randomized to receive 66.6 or 72 cobalt Gray equivalent (CGE) on a prospective dose-searching study by proton and photon irradiation (Radiation Therapy Oncology Group #85-26) with conventional fractionation (1.8 CGE/day, 5 fractions/week). All treatments were planned using the three-dimensional (3D) planning system developed at the Massachusetts General Hospital, and the dose was delivered using opposed lateral fields for the photon component and a noncoplanar isocentric technique for the proton component. Clinical symptoms of TL damage were classified into 4 grades. Computerized tomography (CT) and magnetic resonance imaging (MRI) scans were evaluated for white matter changes. Abnormalities associated with persistent or recurrent tumor were distinguished from radiation-induced changes. TLs were delineated on the original scans of the 10 patients with damage and those of a group of 33 patients with no clinical or MRI evidence of injury. Dose distributions were calculated and dose-volume histograms were obtained for these patients. Of the patients, 10 developed TL damage, with bilateral injury in 2 and unilateral injury in 8. The cumulative TL damage incidence at 2 and 5 years was 7.6 and 13.2%, respectively. The MRI areas suggestive of TL damage were always separated from the tumor bed. Symptoms were severe to moderate in 8 patients. Several baseline factors, tumor- or host-related, were analyzed to evaluate their predictivity for TL damage: age, gender, tumor site, histology, type of presentation, type and number of surgical procedures, primary tumor volume, prescribed dose, normal tissue involvement, and volume of TL receiving doses ranging between 10 and 50 CGE or more. Only gender, in a univariate analysis (log rank) was a significant predictor of damage (0.0155), with male patients being at significantly higher risk of TL injury. In a stepwise Cox regression that included gender as a variable, no other baseline variable improved the prediction of damage. The 2- and 5-year cumulative TL damage rates were 7.6 and 13.2%, respectively. Despite the different TL damage rates related to age, tumor volume, number of surgical procedures prior to radiation therapy, and prescribed doses to the tumor, only gender was a significant predictor of damage (p = 0.0155) using a univariate (log rank) test. Chordomas and chondrosarcomas of the base of the skull may represent an interesting model to evaluate the TL damage rates because of their extradural origin, displacing the white matter instead of infiltrating it as gliomas do, because of their longer local recurrence-free survival other than gliomas and other brain tumors and because of the high doses of irradiation delivered to the target volume to obtain local control.
    International Journal of Radiation OncologyBiologyPhysics 05/1998; 41(1):59-68. · 4.52 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: To evaluate the long term effects of high dose fractionated radiation therapy on brain functioning prospectively in adults without primary brain tumors. Seventeen patients with histologically confirmed chordomas and low grade chondrosarcomas of the skull base were evaluated with neuropsychological measures of intelligence, language, memory, attention, motor function and mood following surgical resection/biopsy of the tumor prior to irradiation, and then at about 6 months, 2 years and 4 years following completion of treatment. None received chemotherapy. In the patients without tumor recurrence or radiation necrosis, there were no indications of adverse effects on cognitive functioning in the post-acute through the late stages after brain irradiation. Even in patients who received doses of radiation up to 66 Cobalt Gy equivalent through nondiseased (temporal lobe) brain tissue, memory and cognitive functioning remained stable for up to 5 years after treatment. A mild decline in psychomotor speed was seen in more than half of the patients, and motor slowing was related to higher radiation doses in midline and temporal lobe brain structures. Results suggest that in adults, tolerance for focused radiation is relatively high in cortical brain structures.
    International Journal of Radiation OncologyBiologyPhysics 06/1997; 38(2):231-9. · 4.52 Impact Factor
  • International Journal of Radiation Oncology Biology Physics - INT J RADIAT ONCOL BIOL PHYS. 01/1996; 36(1):359-359.
  • International Journal of Radiation Oncology Biology Physics - INT J RADIAT ONCOL BIOL PHYS. 01/1996; 36(1):291-291.
  • International Journal of Radiation Oncology Biology Physics - INT J RADIAT ONCOL BIOL PHYS. 01/1995; 32:179-179.
  • [show abstract] [hide abstract]
    ABSTRACT: The low tolerance of the central nervous system (CNS) limits the radiation dose which can be delivered in the treatment of many patients with brain and head and neck tumors. Although there are many reports concerning the tolerance of the CNS, few have examined individual substructures of the brain and fewer still have had detailed dose information. This study has both. A three dimensional planning system was used to develop the combined proton beam/photon beam treatments for 27 patients with skull-base tumors. The cranial nerves and their related nuclei were delineated on the planning CT scans and the radiation dose to each was determined from three dimensional dose distributions. In the 594 CNS structures (22 structures/patient in 27 patients), there have been 17 structures (in 5 patients) with clinically manifest radiation injury, after a mean follow-up time of 74 months (range 40-110 months). From statistical analyses, dose is found to be a significant predictor of injury. Using logistic regression analysis, we find that, for each cranial nerve, at 60 Cobalt Gray Equivalent (CGE) the complication rate is 1% (0.5-3% with 95% confidence) and that the 5% complication rate occurs at 70 CGE (64-81 CGE with 95% confidence). The slope of the dose response curve (at 50%) is 3.2 (2.2-5.4 with 95% confidence). No significant relationship between dose and latency period for nerve injury was found.
    International Journal of Radiation OncologyBiologyPhysics 02/1992; 23(1):27-39. · 4.52 Impact Factor

Publication Stats

232 Citations
45.51 Total Impact Points

Institutions

  • 2005–2013
    • Harvard Medical School
      • • Department of Otology and Laryngology
      • • Department of Radiation Oncology
      Boston, Massachusetts, United States
  • 2007–2012
    • Massachusetts General Hospital
      • Department of Radiation Oncology
      Boston, Massachusetts, United States