Are you Marta González-Santander?

Claim your profile

Publications (2)6.2 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Bisphenol A (BPA) is found in human urine and fat tissue. Higher urinary BPA concentrations are associated with arterial hypertension. To shed light on the underlying mechanism, we orally administered BPA (4 nM to 400 μM in drinking water) to 8-wk-old CD11 mice over 30 d. Mice developed dosage-dependent high blood pressure (systolic 130±12 vs. 170±12 mmHg; EC50 0.4 μM), impairment of acetylcholine (AcH)-induced carotid relaxation (0.66±0.08 vs. 0.44±0.1 mm), a 1.7-fold increase in arterial angiotensin II (AngII), an 8.7-fold increase in eNOS mRNA and protein, and significant eNOS-dependent superoxide and peroxynitrite accumulation. AngII inhibition with 0.5 mg/ml losartan reduced oxidative stress and normalized blood pressure and endothelium-dependent relaxation, which suggests that AngII uncouples eNOS and contributes to the BPA-induc E: d endothelial dysfunction by promoting oxidative and nitrosative stress. Microarray analysis of mouse aortic endothelial cells revealed a 2.5-fold increase in expression of calcium/calmodulin-dependent protein kinase II-α (CaMKII-α) in response to 10 nM BPA, with increased expression of phosphorylated-CaMKII-α in carotid rings of BPA-exposed mice, whereas CaMKII-α inhibition with 100 nM autocamptide-2-related inhibitor peptide (AIP) reduced BPA-mediated increase of superoxide. Administration of CaMKII-α inhibitor KN 93 reduced BPA-induced blood pressure and carotid blood velocity in mice, and reverted BPA-mediated carotid constriction in response to treatment with AcH. Given that CaMKII-α inhibition prevents BPA-mediated high blood pressure, our data suggest that BPA regulates blood pressure by inducing AngII/CaMKII-α uncoupling of eNOS.-Saura, M., Marquez, S., Reventun, P., Olea-Herrero, N., Arenas, M.I., Moreno-Gómez-Toledano, R., Gómez-Parrizas, M., Muñóz-Moreno, C., González-Santander, M., Zaragoza, C., Bosch, R.J. Oral administration of bisphenol A induces high blood pressure through angiotensin II/CaMKII-dependent uncoupling of eNOS.
    FASEB journal : official publication of the Federation of American Societies for Experimental Biology. 08/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: New approaches are needed to the therapy of advanced prostate cancer. This study determined the effect of growth hormone-releasing hormone (GHRH) antagonists, JMR-132 and JV-1-38 on growth of PC3 tumors as well as on angiogenesis and metastasis through the evaluation of various factors that contribute largely to the progression of prostate cancer. Human PC3 androgen-independent prostate cancer cells were injected subcutaneously into nude mice. The treatment with JMR-132 (10 μg/day) or JV-1-38 (20 μg/day) lasted 41 days. We also evaluated the effects of JMR-132 and JV-1-38 on proliferation, cell adhesion and migration in PC-3 cells in vitro. Several techniques (Western blot, reverse transcription polymerase chain reaction, immunohistochemistry, ELISA and zymography) were used to evaluate the expression levels of GHRH receptors and its splice variants, GHRH, vascular endothelial growth factor (VEGF), hypoxia inducible factor (HIF)-1α, metalloproteinases (MMPs) -2 and -9, β-catenin and E-cadherin. GHRH antagonists suppressed the proliferation of PC-3 cells in vitro and significantly inhibited growth of PC3 tumors. After treatment with these analogues, we found an increase in expression of GHRH receptor accompanied by a decrease of GHRH levels, a reduction in both VEGF and HIF-1α expression and in active forms of MMP-2 and MMP-9, a significant increase in levels of membrane-associated β-catenin and a significant decline in E-cadherin. These results support that the blockade of GHRH receptors can modulate elements involved in angiogenesis and metastasis. Consequently, GHRH antagonists could be considered as suitable candidates for therapeutic trials in the management of androgen-independent prostate cancer.
    International Journal of Cancer 07/2012; · 6.20 Impact Factor