N. J. Rattenbury

The University of Manchester, Manchester, England, United Kingdom

Are you N. J. Rattenbury?

Claim your profile

Publications (130)541.27 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report the discovery of a Jupiter-mass planet orbiting an M-dwarf star that gave rise to the microlensing event OGLE-2011-BLG-0265. Such a system is very rare among known planetary systems and thus the discovery is important for theoretical studies of planetary formation and evolution. High-cadence temporal coverage of the planetary signal combined with extended observations throughout the event allows us to accurately model the observed light curve. The final microlensing solution remains, however, degenerate yielding two possible configurations of the planet and the host star. In the case of the preferred solution, the mass of the planet is $M_{\rm p}$ = 1.0 $\pm$ 0.3 $M_{\rm J}$, and the planet is orbiting a star with a mass $M$ = 0.23 $\pm$ 0.07 $M_\odot$. The second possible configuration (2\sigma away) consists of a planet with $M_{\rm p}$ = 0.6 $\pm$ 0.2 $M_{\rm J}$ and host star with $M$ = 0.15 $\pm$ 0.06 $M_{\odot}$. The system is located in the Galactic disk 3-4 kpc towards the Galactic bulge. In both cases, with an orbit size of 2 AU, the planet is a "cold Jupiter" -- located well beyond the "snow line" of the host star. Currently available data make the secure selection of the correct solution difficult, but there are prospects for lifting the degeneracy with additional follow-up observations in the future, when the lens and source star separate.
    10/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: We present the discovery of a plausible disk-eclipse system OGLE-BLG182.1.162852. The OGLE light curve for OGLE-BLG182.1.162852 shows three episodes of dimming by $I \simeq 2 - 3$ magnitudes, separated by 1277 days. The shape of the light curve during dimming events is very similar to that of known disk eclipse system OGLE-LMC-ECL-11893 (Dong et al. 2014). The event is presently undergoing a dimming event, predicted to end on December 30th, 2014. We encourage spectroscopic and multi-band photometric observations now. The next dimming episode for OGLE-BLG182.1.162852 is expected to occur in March 2018.
    10/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Exoplanet Euclid Legacy Survey (ExELS) proposes to determine the frequency of cold exoplanets down to Earth mass from host separations of ~1 AU out to the free-floating regime by detecting microlensing events in Galactic Bulge. We show that ExELS can also detect large numbers of hot, transiting exoplanets in the same population. The combined microlensing+transit survey would allow the first self-consistent estimate of the relative frequencies of hot and cold sub-stellar companions, reducing biases in comparing "near-field" radial velocity and transiting exoplanets with "far-field" microlensing exoplanets. The age of the Bulge and its spread in metallicity further allows ExELS to better constrain both the variation of companion frequency with metallicity and statistically explore the strength of star-planet tides. We conservatively estimate that ExELS will detect ~4100 sub-stellar objects, with sensitivity typically reaching down to Neptune-mass planets. Of these, ~600 will be detectable in both Euclid's VIS (optical) channel and NISP H-band imager, with ~90% of detections being hot Jupiters. Likely scenarios predict a range of 2900-7000 for VIS and 400-1600 for H-band. Twice as many can be expected in VIS if the cadence can be increased to match the 20-minute H-band cadence. The separation of planets from brown dwarfs via Doppler boosting or ellipsoidal variability will be possible in a handful of cases. Radial velocity confirmation should be possible in some cases, using 30-metre-class telescopes. We expect secondary eclipses, and reflection and emission from planets to be detectable in up to ~100 systems in both VIS and NISP-H. Transits of ~500 planetary-radius companions will be characterised with two-colour photometry and ~40 with four-colour photometry (VIS,YJH), and the albedo of (and emission from) a large sample of hot Jupiters in the H-band can be explored statistically.
    10/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The mass of the lenses giving rise to Galactic microlensing events can be constrained by measuring the relative lens-source proper motion and lens flux. The flux of the lens can be separated from that of the source, companions to the source, and unrelated nearby stars with high-resolution images taken when the lens and source are spatially resolved. For typical ground-based adaptive optics (AO) or space-based observations, this requires either inordinately long time baselines or high relative proper motions. We provide a list of microlensing events toward the Galactic Bulge with high relative lens-source proper motion that are therefore good candidates for constraining the lens mass with future high-resolution imaging. We investigate all events from 2004 -- 2013 that display detectable finite-source effects, a feature that allows us to measure the proper motion. In total, we present 20 events with mu >~ 8 mas/yr. Of these, 14 were culled from previous analyses while 6 are new, including OGLE-2004-BLG-368, MOA-2005-BLG-36, OGLE-2012-BLG-0211, OGLE-2012-BLG-0456, MOA-2012-BLG-532, and MOA-2013-BLG-029. In <~12 years the lens and source of each event will be sufficiently separated for ground-based telescopes with AO systems or space telescopes to resolve each component and further characterize the lens system. Furthermore, for the most recent events, comparison of the lens flux estimates from images taken immediately to those estimated from images taken when the lens and source are resolved can be used to empirically check the robustness of the single-epoch method currently being used to estimate lens masses for many events.
    The Astrophysical Journal 10/2014; 794(1):71. · 6.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: NASA's proposed WFIRST-AFTA mission will discover thousands of exoplanets with separations from the habitable zone out to unbound planets, using the technique of gravitational microlensing. The Study Analysis Group 11 of the NASA Exoplanet Program Analysis Group was convened to explore scientific programs that can be undertaken now, and in the years leading up to WFIRST's launch, in order to maximize the mission's scientific return and to reduce technical and scientific risk. This report presents those findings, which include suggested precursor Hubble Space Telescope observations, a ground-based, NIR microlensing survey, and other programs to develop and deepen community scientific expertise prior to the mission.
    09/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present the analysis of the gravitational microlensing event OGLE-2013-BLG-0102. The light curve of the event is characterized by a strong short-term anomaly superposed on a smoothly varying lensing curve with a moderate magnification $A_{\rm max}\sim 1.5$. It is found that the event was produced by a binary lens with a mass ratio between the components is $q = 0.13$ and the anomaly was caused by the passage of the source trajectory over a caustic located away from the barycenter of the binary. From the analysis of the effects on the light curve due to the finite size of the source and the parallactic motion of the Earth, the physical parameters of the lens system are determined. The measured masses of the lens components are $M_{1} = 0.097 \pm 0.011~M_{\odot}$ and $M_{2} = 0.013 \pm 0.002~M_{\odot}$, which correspond to the upper and lower limits of brown dwarfs, respectively. The distance to the lens is $3.02 \pm 0.21~{\rm kpc}$ and the projected separation between the lens components is $0.80 \pm 0.04~{\rm AU}$. These physical parameters lie beyond the detection ranges of other methods, demonstrating that microlensing is a useful method in detecting very low-mass binaries.
    07/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Using gravitational microlensing, we detected a cold terrestrial planet orbiting one member of a binary star system. The planet has low mass (twice Earth’s) and lies projected at ~0.8 astronomical units (AU) from its host star, about the distance between Earth and the Sun. However, the planet’s temperature is much lower, <60 Kelvin, because the host star is only 0.10 to 0.15 solar masses and therefore more than 400 times less luminous than the Sun. The host itself orbits a slightly more massive companion with projected separation of 10 to 15 AU. This detection is consistent with such systems being very common. Straightforward modification of current microlensing search strategies could increase sensitivity to planets in binary systems. With more detections, such binary-star planetary systems could constrain models of planet formation and evolution.
    Science 07/2014; 345(6192):46-49. · 31.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Characterizing a microlensing planet is done from modeling an observed lensing light curve. In this process, it is often confronted that solutions of different lensing parameters result in similar light curves, causing difficulties in uniquely interpreting the lens system, and thus understanding the causes of different types of degeneracy is important. In this work, we show that incomplete coverage of a planetary perturbation can also result in degenerate solutions even for events where the planetary signal is detected with a high level of statistical significance. We demonstrate the degeneracy for an actually observed event OGLE-2012-BLG-0455/MOA-2012-BLG-206. The peak of this high-magnification event $(A_{\rm max}\sim400)$ exhibits very strong deviation from a point-lens model with $\Delta\chi^{2}\gtrsim4000$. From detailed modeling of the light curve, we find that the deviation can be explained by four distinct solutions, i.e., two very different sets of solutions, each with a two-fold degeneracy. While the two-fold (so-called ``close/wide'') degeneracy is well-understood, the degeneracy between the radically different solutions is not previously known. The model light curves of this degeneracy differ substantially in the parts that were not covered by observation, indicating that the degeneracy is caused by the incomplete coverage of the perturbation. It is expected that the frequency of the degeneracy introduced in this work will be greatly reduced with the improvement of the current lensing survey and follow-up experiments and the advent of new surveys.
    The Astrophysical Journal 05/2014; 787(1):71. · 6.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report the discovery of a massive planet OGLE-2008-BLG-355Lb. The light curve analysis indicates a planet:host mass ratio of q = 0.0118 +/- 0.0006 at a separation of 0.877 +/- 0.010 Einstein radii. We do not measure a significant microlensing parallax signal and do not have high angular resolution images that could detect the planetary host star. Therefore, we do not have a direct measurement of the host star mass. A Bayesian analysis, assuming that all host stars have equal probability to host a planet with the measured mass ratio implies a host star mass of M_h = 0.37_{-0.17}^{+0.30} M_Sun and a companion of mass M_P = 4.6^{+3.7}_{-2.2} M_Jup, at a projected separation of r_proj = 1.70^{+0.29}_{-0.30} AU. The implied distance to the planetary system is D_L = 6.8 +/- 1.1 kpc. A planetary system with the properties preferred by the Bayesian analysis would be a challenge to the core-accretion model of planet formation, as the core-accretion model predicts that massive planets are far more likely to form around more massive host stars. This core accretion model prediction is not consistent with our Bayesian prior of an equal probability of host stars of all masses to host a planet with the measured mass ratio. So, if the core accretion model prediction is right, we should expect that follow-up high angular resolution observations will detect a host star with a mass in the upper part of the range allowed by the Bayesian analysis. That is, the host would probably be a K or G dwarf.
    The Astrophysical Journal 03/2014; 788(2). · 6.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Based on its high proper motion $\mu=12.5\pm 1\,\masyr$, MOA-2013-BLG-220Lb is the best candidate to date for a microlensing planet with a verifiable brown dwarf host. This candidacy can be partially tested immediately and more fully tested by $\sim 2021$, when the source and lens will have separated sufficiently to be resolved in high-resolution images even if the lens is at the bottom of the main sequence, and so extremely faint, $H\sim 24$. The planet-star mass ratio is $q=3.01\pm 0.02\times 10^{-3}$. The planet could have been detected and characterized purely with follow-up data. The potential to completely characterize planetary events from followup data has far-reaching implications for microlensing surveys, both current and into the LSST era.
    03/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present a detailed analysis of survey and follow-up observations of microlensing event OGLE-2012-BLG-0406 based on data obtained from 10 different observatories. Intensive coverage of the lightcurve, especially the perturbation part, allowed us to accurately measure the parallax effect and lens orbital motion. Combining our measurement of the lens parallax with the angular Einstein radius determined from finite-source effects, we estimate the physical parameters of the lens system. We find that the event was caused by a $2.73\pm 0.43\ M_{\rm J}$ planet orbiting a $0.44\pm 0.07\ M_{\odot}$ early M-type star. The distance to the lens is $4.97\pm 0.29$\ kpc and the projected separation between the host star and its planet at the time of the event is $3.45\pm 0.26$ AU. We find that the additional coverage provided by follow-up observations, especially during the planetary perturbation, leads to a more accurate determination of the physical parameters of the lens.
    The Astrophysical Journal 02/2014; 782(1):48. · 6.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present the first microlensing candidate for a free-floating exoplanet-exomoon system, MOA-2011-BLG-262, with a primary lens mass of M_host ~ 4 Jupiter masses hosting a sub-Earth mass moon. The data are well fit by this exomoon model, but an alternate star+planet model fits the data almost as well. Nevertheless, these results indicate the potential of microlensing to detect exomoons, albeit ones that are different from the giant planet moons in our solar system. The argument for an exomoon hinges on the system being relatively close to the Sun. The data constrain the product M pi_rel, where M is the lens system mass and pi_rel is the lens-source relative parallax. If the lens system is nearby (large pi_rel), then M is small (a few Jupiter masses) and the companion is a sub-Earth-mass exomoon. The best-fit solution has a large lens-source relative proper motion, mu_rel = 19.6 +- 1.6 mas/yr, which would rule out a distant lens system unless the source star has an unusually high proper motion. However, data from the OGLE collaboration nearly rule out a high source proper motion, so the exoplanet+exomoon model is the favored interpretation for the best fit model. However, the alternate solution has a lower proper motion, which is compatible with a distant (so stellar) host. A Bayesian analysis does not favor the exoplanet+exomoon interpretation, so Occam's razor favors a lens system in the bulge with host and companion masses of M_host = 0.12 (+0.19 -0.06) M_solar and m_comp = 18 (+28 -100 M_earth, at a projected separation of a_perp ~ 0.84 AU. The existence of this degeneracy is an unlucky accident, so current microlensing experiments are in principle sensitive to exomoons. In some circumstances, it will be possible to definitively establish the low mass of such lens systems through the microlensing parallax effect. Future experiments will be sensitive to less extreme exomoons.
    The Astrophysical Journal 12/2013; 785(2). · 6.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We analyze the planetary microlensing event MOA-2010-BLG-328. The best fit yields host and planetary masses of Mh = 0.11+/-0.01 M_{sun} and Mp = 9.2+/-2.2M_Earth, corresponding to a very late M dwarf and sub-Neptune-mass planet, respectively. The system lies at DL = 0.81 +/- 0.10 kpc with projected separation r = 0.92 +/- 0.16 AU. Because of the host's a-priori-unlikely close distance, as well as the unusual nature of the system, we consider the possibility that the microlens parallax signal, which determines the host mass and distance, is actually due to xallarap (source orbital motion) that is being misinterpreted as parallax. We show a result that favors the parallax solution, even given its close host distance. We show that future high-resolution astrometric measurements could decisively resolve the remaining ambiguity of these solutions.
    The Astrophysical Journal 12/2013; 779:91. · 6.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report analysis of high microlensing event MOA-2008-BLG-379, which has a strong microlensing anomaly at its peak, due to a massive planet with a mass ratio of q = 6.9 x 10^{-3}. Because the faint source star crosses the large resonant caustic, the planetary signal dominates the light curve. This is unusual for planetary microlensing events, and as a result, the planetary nature of this light curve was not immediately noticed. The planetary nature of the event was found when the MOA Collaboration conducted a systematic study of binary microlensing events previously identified by the MOA alert system. We have conducted a Bayesian analysis based on a standard Galactic model to estimate the physical parameters of the lens system. This yields a host star mass of M_L = 0.66_{-0.33}^{+0.29} M_Sun orbited by a planet of mass m_P = 4.8_{-2.4}^{+2.1} M_Jup at an orbital separation of a = 4.1_{-1.5}^{+1.9} AU at a distance of D_L = 3.6 +/- 1.3 kpc. The faint source magnitude of I_S = 21.30 and relatively high lens-source relative proper motion of mu_rel = 7.6 +/- 1.6 mas/yr implies that high angular resolution adaptive optics or Hubble Space Telescope observations are likely to be able to detect the source star, which would determine the masses and distance of the planet and its host star.
    The Astrophysical Journal 11/2013; 788(1). · 6.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Observations of accretion disks around young brown dwarfs have led to the speculation that they may form planetary systems similar to normal stars. While there have been several detections of planetary-mass objects around brown dwarfs (2MASS 1207-3932 and 2MASS 0441-2301), these companions have relatively large mass ratios and projected separations, suggesting that they formed in a manner analogous to stellar binaries. We present the discovery of a planetary-mass object orbiting a field brown dwarf via gravitational microlensing, OGLE-2012-BLG-0358Lb. The system is a low secondary/primary mass ratio (0.080 +- 0.001), relatively tightly-separated (~0.87 AU) binary composed of a planetary-mass object with 1.9 +- 0.2 Jupiter masses orbiting a brown dwarf with a mass 0.022 M_Sun. The relatively small mass ratio and separation suggest that the companion may have formed in a protoplanetary disk around the brown dwarf host, in a manner analogous to planets.
    The Astrophysical Journal 11/2013; 778:38. · 6.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Global "second-generation" microlensing surveys aim to discover and characterize extrasolar planets and their frequency, by means of round-the-clock high-cadence monitoring of a large area of the Galactic bulge, in a controlled experiment. We report the discovery of a giant planet in microlensing event MOA-2011-BLG-322. This moderate-magnification event, which displays a clear anomaly induced by a second lensing mass, was inside the footprint of our second-generation microlensing survey, involving MOA, OGLE and the Wise Observatory. The event was observed by the survey groups only, without prompting alerts that could have led to any dedicated follow-up observations. Fitting a microlensing model to the data, we find that the time scale of the event was t_E=23.4+/-0.9 days, and the mass ratio between the lens star and its companion is q=0.024+/-0.002. Finite-source effects are marginally detected, and upper limits on them help break some of the degeneracy in the system parameters. Using a Bayesian analysis that incorporates a Galactic structure model, we estimate the mass of the lens at 0.31 +0.34/-0.17 M_sun, at a distance of 7.74 +0.97/-0.91 kpc. Thus, the companion is likely a planet of mass 7.8 +8.6/-4.3 M_J, at a projected separation of 3.6 +1.5/-1.3 AU, rather far beyond the snow line. This is the first pure-survey planet reported from a second-generation microlensing survey, and shows that the survey data alone can be sufficient to characterize a planetary model. With the detection of additional survey-only planets, we will be able to constrain the frequency of extrasolar planets near their systems' snow lines.
    09/2013;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A planetary microlensing signal is generally characterized by a short-term perturbation to the standard single lensing light curve. A subset of binary-source events can produce perturbations that mimic planetary signals, thereby introducing an ambiguity between the planetary and binary-source interpretations. In this paper, we present analysis of the microlensing event MOA-2012-BLG-486, for which the light curve exhibits a short-lived perturbation. Routine modeling not considering data taken in different passbands yields a best-fit planetary model that is slightly preferred over the best-fit binary-source model. However, when allowed for a change in the color during the perturbation, we find that the binary-source model yields a significantly better fit and thus the degeneracy is clearly resolved. This event not only signifies the importance of considering various interpretations of short-term anomalies, but also demonstrates the importance of multi-band data for checking the possibility of false-positive planetary signals.
    The Astrophysical Journal 08/2013; 778(1). · 6.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present the discovery of a Neptune-mass planet OGLE-2007-BLG-368Lb with a planet–star mass ratio of q = [9.5 ± 2.1] × 10−5 via gravitational microlensing. The planetary deviation was detected in real-time thanks to the high cadence of the Microlensing Observations in Astrophysics survey, real-time light-curve monitoring and intensive follow-up observations. A Bayesian analysis returns the stellar mass and distance at Ml = 0.64+0.21 −0.26M andDl = 5.9+0.9 −1.4 kpc, respectively, so themass and separation of the planet areMp = 20+7 −8M⊕ and a = 3.3+1.4 −0.8 AU, respectively. This discovery adds another cold Neptune-mass planet to the planetary sample discovered by microlensing, which now comprises four cold Neptune/super-Earths, five gas giant planets, and another sub- Saturn mass planet whose nature is unclear. The discovery of these 10 cold exoplanets by the microlensing method implies that the mass ratio function of cold exoplanets scales as dNpl/d log q ∝ q−0.7±0.2 with a 95% confidence level upper limit of n < −0.35 (where dNpl/d log q ∝ qn). As microlensing is most sensitive to planets beyond the snow-line, this implies that Neptune-mass planets are at least three times more common than Jupiters in this region at the 95% confidence level.
    The Astrophysical Journal 07/2013; 710:1641. · 6.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A measurement by microlensing of the planetary mass function of planets with masses ranging from 5 M⊕ to 10 MJ and orbital radii from 0.5 to 10 au was reported recently. A strategy for extending the mass range down to (1-3) M⊕ is proposed here. This entails monitoring the peaks of a few tens of microlensing events with moderately high magnifications with 1-2 m class telescopes. Planets of a few Earth masses are found to produce deviations of ˜5 per cent to the peaks of microlensing light curves with durations ˜(0.7-3) hr in events with magnification ˜100 if the projected separation of the planet lies in the annular region (0.85-1.2)rE. Similar deviations are produced by Earth mass planets in the annular region (0.95-1.05)rE. It is possible that sub-Earths could be detected very close to the Einstein ring if they are sufficiently abundant, and also planetary systems with more than one low-mass planet.
    Monthly Notices of the Royal Astronomical Society 06/2013; 431(4):2975-2985. · 5.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We present measurements of the microlensing optical depth and event rate toward the Galactic Bulge based on two years of the MOA-II survey. This sample contains ~1000 microlensing events, with an Einstein Radius crossing time of t_E < 200 days between -5 <l< 10 degree and -7 <b< -1 degree. Our event rate and optical depth analysis uses 474 events with well defined microlensing parameters. In the central fields with |l|< 5 degree, we find an event rates of \Gamma = [2.39+/-1.1]e^{[0.60\pm0.05](3-|b|)}x 10^{-5}/star/yr and an optical depth of \tau_{200} = [2.35+/-0.18]e^{[0.51+/-0.07](3-|b|)}x 10^{-6} for the 427 events using all sources brighter than I_s = 20 mag centered at (l,b)=(0.38, -3.72). We find that the event rate is maximized at low latitudes and a longitude of $l~1 degree. For the 111 events in 3.2 deg^2 of the central Galactic Bulge at |b| < 3.0 degree and 0.0 < l < 2.0, centered at (l,b)=(0.97, -2.26), we find \Gamma = 4.57_{-0.46}^{+0.51} x 10^{-5}/star/yr and \tau_{200} = 3.64_{-0.45}^{+ 0.51} x 10^{-6}. We also consider a Red Clump Giant (RCG) star sample with I_s<17.5 mag. Our results are consistent with previous optical depth measurements. We find that the previously observed difference in optical depth measurements between all-source and RCG samples may be largely due to statistical fluctuations. These event rate measurements towards the central galactic bulge are necessary to predict the microlensing event rate and to optimize the survey fields in the future space mission such as WFIRST.
    05/2013;

Publication Stats

1k Citations
541.27 Total Impact Points

Institutions

  • 2004–2014
    • The University of Manchester
      • • Jodrell Bank Centre for Astrophysics
      • • School of Physics and Astronomy
      Manchester, England, United Kingdom
    • Princeton University
      Princeton, New Jersey, United States
    • Nagoya University
      • Solar-Terrestrial Environment Laboratory
      Nagoya-shi, Aichi-ken, Japan
  • 2000–2014
    • University of Auckland
      • • Department of Physics
      • • Faculty of Science
      Окленд, Auckland, New Zealand
  • 2008
    • University of Warsaw
      Warszawa, Masovian Voivodeship, Poland
  • 2006
    • Bank of England
      Londinium, England, United Kingdom
  • 2003
    • The Royal Observatory, Edinburgh
      Edinburgh, Scotland, United Kingdom