P. Mauskopf

Arizona State University, Phoenix, Arizona, United States

Are you P. Mauskopf?

Claim your profile

Publications (116)178.74 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: NIKA is a dual-band camera operating with 315 frequency multiplexed LEKIDs cooled at 100 mK. NIKA is designed to observe the sky in intensity and polarisation at 150 and 260 GHz from the IRAM 30-m telescope. It is a test-bench for the final NIKA2 camera. The incoming linear polarisation is modulated at four times the mechanical rotation frequency by a warm rotating multi-layer Half Wave Plate. Then, the signal is analysed by a wire grid and finally absorbed by the LEKIDs. The small time constant (< 1ms ) of the LEKID detectors combined with the modulation of the HWP enables the quasi-simultaneous measurement of the three Stokes parameters I, Q, U, representing linear polarisation. In this pa- per we present results of recent observational campaigns demonstrating the good performance of NIKA in detecting polarisation at mm wavelength.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The discovery of almost 2000 exoplanets has revealed an unexpectedly diverse planet population. Observations to date have shown that our Solar System is certainly not representative of the general population of planets in our Milky Way. The key science questions that urgently need addressing are therefore: What are exoplanets made of? Why are planets as they are? What causes the exceptional diversity observed as compared to the Solar System? EChO (Exoplanet Characterisation Observatory) has been designed as a dedicated survey mission for transit and eclipse spectroscopy capable of observing a large and diverse planet sample within its four-year mission lifetime. EChO can target the atmospheres of super-Earths, Neptune-like, and Jupiter-like planets, in the very hot to temperate zones (planet temperatures of 300K-3000K) of F to M-type host stars. Over the next ten years, several new ground- and space-based transit surveys will come on-line (e.g. NGTS, CHEOPS, TESS, PLATO), which will specifically focus on finding bright, nearby systems. The current rapid rate of discovery would allow the target list to be further optimised in the years prior to EChO's launch and enable the atmospheric characterisation of hundreds of planets. Placing the satellite at L2 provides a cold and stable thermal environment, as well as a large field of regard to allow efficient time-critical observation of targets randomly distributed over the sky. A 1m class telescope is sufficiently large to achieve the necessary spectro-photometric precision. The spectral coverage (0.5-11 micron, goal 16 micron) and SNR to be achieved by EChO, thanks to its high stability and dedicated design, would enable a very accurate measurement of the atmospheric composition and structure of hundreds of exoplanets.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The thermal Sunyaev-Zel'Dovich (tSZ) effect is expected to provide a low scatter mass proxy for galaxy clusters since it is directly proportional to the cluster thermal energy. tSZ observations have proven to be a powerful tool to detect and study them but high angular resolution observations are now necessary to push their investigation at higher redshift. In this paper, we report high angular (< 20 arcsec) resolution tSZ observations of the high-redshift cluster CLJ1226.9+3332 (z=0.89). It was imaged at 150 and 260 GHz using the NIKA camera at the IRAM 30-meter telescope. The 150 GHz map shows that CLJ1226.9+3332 is morphologically relaxed on large scales with evidence of a disturbed core, while the 260 GHz channel is used mostly to identify point source contamination. NIKA data are combined with those of Planck and X-ray from Chandra to infer the cluster radial pressure, density, temperature and entropy distributions. The total mass profile of the cluster is derived, and we find $M_{500} = 5.96^{+1.02}_{-0.79} $ x $10^{14} M_{\odot}$ within the radius $R_{500} = 930^{+50}_{-43}$ kpc, at 68% confidence level ($R_{500}$ is the radius within which the average density is 500 times the critical density at the cluster's redshift). NIKA is the prototype camera of NIKA2, a KIDs (Kinetic Inductance Detectors) based instrument to be installed at the end of 2015. This work is, therefore, part of a pilot study aiming at optimizing tSZ NIKA2 large programs.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: High resolution observations of the thermal Sunyaev-Zel'dovich (tSZ) effect are necessary to allow the use of clusters of galaxies as a probe for large scale structures at high redshifts. With its high resolution and dual-band capability at millimeter wavelengths, the NIKA camera can play a significant role in this context. NIKA is based on newly developed Kinetic Inductance Detectors (KIDs) and operates at the IRAM 30m telescope, Pico Veleta, Spain. In this paper, we give the status of the NIKA camera, focussing on the KID technology. We then present observations of three galaxy clusters: RX J1347.5-1145 as a demonstrator of the NIKA capabilities and the recent observations of CL J1226.9+3332 (z = 0.89) and MACS J0717.5+3745 (z = 0.55). We also discuss prospects for the final NIKA2 camera, which will have a 6.5 arcminute field of view with about 5000 detectors in two bands at 150 and 260 GHz.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The New IRAM KID Array (NIKA) is a dual-band camera operating with frequency multiplexed arrays of Lumped Element Kinetic Inductance Detectors (LEKIDs) cooled to 100 mK. NIKA is designed to observe the intensity and polarisation of the sky at 1.25 and 2.14 mm from the IRAM 30 m telescope. We present the improvements on the control of systematic effects and astrophysical results made during the last observation campaigns between 2012 and 2014.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: SuperSpec is a novel on-chip spectrometer we are developing for multi-object, moderate resolution (R = 100 − 500), large bandwidth (~1.65:1) submillimeter and millimeter survey spectroscopy of high-redshift galaxies. The spectrometer employs a filter bank architecture, and consists of a series of half-wave resonators formed by lithographically-patterned superconducting transmission lines. The signal power admitted by each resonator is detected by a lumped element titanium nitride (TiN) kinetic inductance detector (KID) operating at 100 – 200 MHz. We have tested a new prototype device that is more sensitive than previous devices, and easier to fabricate. We present a characterization of a representative R = 282 channel at f = 236 GHz, including measurements of the spectrometer detection efficiency, the detector responsivity over a large range of optical loading, and the full system optical efficiency. We outline future improvements to the current system that we expect will enable construction of a photon-noise-limited R = 100 filter bank, appropriate for a line intensity mapping experiment targeting the [CII] 158 μm transition during the Epoch of Reionization.
    SPIE Astronomical Telescopes + Instrumentation; 08/2014
  • [Show abstract] [Hide abstract]
    ABSTRACT: We are developing arrays of kinetic inductance detectors for sub-millimeter polarimetry that will be deployed on the BLAST balloon-borne instrument. The array is feedhorn-coupled, and each pixel contains two lumped-element kinetic inductance detectors (LEKIDs) made of TiN. The absorbing, inductive sections of the LEKID-pair are orthogonal, which allows simultaneous measurement of both horizontal and vertical polarizations within one spatial pixel. In this paper, we show efficient absorption in TiN films when coupled to waveguide at room temperature and present dark measurements of single polarization devices with varying capacitor geometries. We show that it will be difficult to achieve background-limited performance in BLAST with stoichiometric TiN films with T \(_{c}=4.5\) K, and that non-stoichiometric films with lower T \(_{c}\) will be required.
    Journal of Low Temperature Physics 08/2014; 176(3-4). DOI:10.1007/s10909-014-1160-2 · 1.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We discuss the design, fabrication, and testing of prototype horn-coupled, lumped-element kinetic inductance detectors (LEKIDs) designed for cosmic microwave background (CMB) studies. The LEKIDs are made from a thin aluminum film deposited on a silicon wafer and patterned using standard photolithographic techniques at STAR Cryoelectronics, a commercial device foundry. We fabricated twenty-element arrays, optimized for a spectral band centered on 150 GHz, to test the sensitivity and yield of the devices as well as the multiplexing scheme. We characterized the detectors in two configurations. First, the detectors were tested in a dark environment with the horn apertures covered, and second, the horn apertures were pointed towards a beam-filling cryogenic blackbody load. These tests show that the multiplexing scheme is robust and scalable, the yield across multiple LEKID arrays is 91%, and the noise-equivalent temperatures (NET) for a 4 K optical load are in the range 26$\thinspace\pm6 \thinspace \mu \mbox{K} \sqrt{\mbox{s}}$.
    Review of Scientific Instruments 07/2014; 85(12). DOI:10.1063/1.4903855 · 1.58 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present the results of a feasibility study, which examined deployment of a ground-based millimeter-wave polarimeter, tailored for observing the cosmic microwave background (CMB), to Isi Station in Greenland. The instrument for this study is based on lumped-element kinetic inductance detectors (LEKIDs) and an F/2.4 catoptric, crossed-Dragone telescope with a 500 mm aperture. The telescope is mounted inside the receiver and cooled to $<\,4$ K by a closed-cycle $^4$He refrigerator to reduce background loading on the detectors. Linearly polarized signals from the sky are modulated with a metal-mesh half-wave plate that is rotated at the aperture stop of the telescope with a hollow-shaft motor based on a superconducting magnetic bearing. The modular detector array design includes at least 2300 LEKIDs, and it can be configured for spectral bands centered on 150~GHz or greater. Our study considered configurations for observing in spectral bands centered on 150, 210 and 267~GHz. The entire polarimeter is mounted on a commercial precision rotary air bearing, which allows fast azimuth scan speeds with negligible vibration and mechanical wear over time. A slip ring provides power to the instrument, enabling circular scans (360 degrees of continuous rotation). This mount, when combined with sky rotation and the latitude of the observation site, produces a hypotrochoid scan pattern, which yields excellent cross-linking and enables 34\% of the sky to be observed using a range of constant elevation scans. This scan pattern and sky coverage combined with the beam size (15~arcmin at 150~GHz) makes the instrument sensitive to $5 < \ell < 1000$ in the angular power spectra.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The New IRAM KID Array (NIKA) instrument is a dual-band imaging camera operating with Kinetic Inductance Detectors (KID) cooled at 100 mK. NIKA is designed to observe the sky at wavelengths of 1.25 and 2.14 mm from the IRAM 30m telescope at Pico Veleta with an estimated resolution of 13 arcsec and 18 arcsec respectively. This work presents the performance of the NIKA camera prior to its opening to the astrophysical community as an IRAM common user facility in early 2014. NIKA is a test-bench for the final NIKA2 instrument to be installed at the end of 2015. The last NIKA observation campaigns on November 2012 and June 2013 have been used to evaluate this performance and to improve the control of systematic effects. We discuss here the dynamical tuning of the readout electronics to optimize the KID working point with respect to background changes and the new technique of atmospheric absorption correction. These modifications improve significantly the overall linearity, sensitivity and absolute calibration performance of NIKA. This is proved on observations of point-like sources for which we obtain a best sensitivity (averaged over all valid detectors) of 40 and 14 mJy.s^1/2 for optimal weather conditions for the 1.25 and 2.14 mm arrays, respectively. NIKA observations of well known extended sources (DR21 complex and the Horsehead nebula) are presented. This performance makes the NIKA camera a competitive astrophysical instrument.
    Astronomy and Astrophysics 02/2014; 569. DOI:10.1051/0004-6361/201423557 · 4.48 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: SuperSpec is an ultra-compact spectrometer-on-a-chip for mm and submm wavelength astronomy. Its very small size, wide spectral bandwidth, and highly multiplexed detector readout will enable construction of powerful multi-object spectrometers for observations of galaxies at high redshift. SuperSpec is a filter bank with planar, lithographed, superconducting transmission line resonator filters and lumped-element kinetic inductance detectors made from Titanium Nitride. We have built an 81 detector prototype that operates in the 195-310 GHz band. The prototype has a wide-band metal feed horn with a transition to microstrip that feeds the filter bank. The prototype has demonstrated optical filter bank channels with a range of resolving powers from 300 to 700, measured fractional frequency noise of 10^{-17} Hz^{-1} at 1 Hz.
    Journal of Low Temperature Physics 01/2014; DOI:10.1007/s10909-014-1122-8 · 1.04 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We discuss the Stratospheric Kinetic Inductance Polarimeter (SKIP). SKIP is a proposed balloon-borne experiment designed to study the cosmic microwave background, the cosmic infrared background, and Galactic dust emission by observing 1100 square degrees of sky in the Northern Hemisphere with launches from Kiruna, Sweden. The instrument contains 2317 single-polarization, horn-coupled, aluminum lumped-element kinetic inductance detectors (LEKIDs), which will be maintained at 100 mK by an adiabatic demagnetization refrigerator. The polarimeter will operate in two configurations, one sensitive to a spectral band centered on 150 GHz and the other sensitive to 260 and 350 GHz bands. The detector readout system is based on the ROACH-1 board, and the detectors will be biased below 300 MHz. The detector array is fed by an F/2.4 crossed-Dragone telescope with a 500 mm aperture yielding a 15 arcminute full-width half-maximum beam at 150 GHz. To minimize detector loading and maximize sensitivity, the entire optical system will be cooled to 1 K. Linearly polarized sky signals will be modulated with a metal-mesh half-wave plate that is mounted at the telescope aperture and is rotated on a superconducting magnetic bearing. The observation program consists of two or more five-day flights, and 150 GHz observations are planned to begin in 2017.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: SuperSpec is a novel on-chip spectrometer we are developing for (sub)millimeter wavelength astronomy. Our approach utilizes a filterbank of moderate resolution (R ̃ 500{)} channels, coupled to lumped element kinetic inductance detectors (KIDs), all integrated onto a single silicon chip. The channels are half-wave resonators formed by lithographically depositing segments of superconducting transmission line, and the KIDs are titanium nitride resonators. Here we present optical measurements of a first generation prototype, operating in the 180-280 GHz frequency range. We have used a coherent source to measure the spectral profiles of 17 channels, which achieve linewidths corresponding to quality factors as high as Q_{filt} = 700{,} consistent with the designed values plus additional dissipation characterized by Q_i ≈ 1440{.} We have also used a Fourier Transform Spectrometer to characterize the spectral purity of all 72 channels on the chip, and measure typical out of band responses {̃ }30 dB below the peak response.
    Journal of Low Temperature Physics 12/2013; DOI:10.1007/s10909-013-1068-2 · 1.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report on the direct measurement of the electron-phonon relaxation time, tau(eph), in disordered TiN films. Measured values of iota(eph) are from 5.5 ns to 88 ns in the 4.2 to 1.7 K temperature range and consistent with a T-3 temperature dependence. The electronic density of states at the Fermi level N-0 is estimated from measured material parameters. The presented results confirm that thin TiN films are promising candidate-materials for ultrasensitive superconducting detectors. (C) 2013 AIP Publishing LLC.
    Applied Physics Letters 12/2013; 103(25). DOI:10.1063/1.4851235 · 3.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The New IRAM KIDs Array (NIKA) is a pathfinder instrument devoted to millimetric astronomy. In 2009 it was the first multiplexed KID camera on the sky; currently it is installed at the focal plane of the IRAM 30-meters telescope at Pico Veleta (Spain). We present preliminary data from the last observational run and the ongoing developments devoted to the next NIKA-2 kilopixels camera, to be commissioned in 2015. We also report on the latest laboratory measurements, and recent improvements in detector cosmetics and read-out electronics. Furthermore, we describe a new acquisition strategy allowing us to improve the photometric accuracy, and the related automatic tuning procedure.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present the first detection of the thermal Sunyaev-Zel'dovich (tSZ) effect from a cluster of galaxies performed with a KIDs (Kinetic Inductance Detectors) based instrument. The tSZ effect is a distortion of the black body CMB (Cosmic Microwave Background) spectrum produced by the inverse Compton interaction of CMB photons with the hot electrons of the ionized intra-cluster medium. The massive, intermediate redshift cluster RX J1347.5-1145 has been observed using NIKA (New IRAM KIDs arrays), a dual-band (140 and 240 GHz) mm-wave imaging camera, which exploits two arrays of hundreds of KIDs: the resonant frequencies of the superconducting resonators are shifted by mm-wave photons absorption. This tSZ cluster observation demonstrates the potential of the next generation NIKA2 instrument, being developed for the 30m telescope of IRAM, at Pico Veleta (Spain). NIKA2 will have 1000 detectors at 140GHz and 2x2000 detectors at 240GHz, providing in that band also a measurement of the linear polarization. NIKA2 will be commissioned in 2015.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Clusters of galaxies provide precious informations on the evolution of the Universe and large scale structures. Recent cluster observations via the thermal Sunyaev-Zel'dovich (tSZ) effect have proven to be a powerful tool to detect and study them. In this context, high resolution tSZ observations (about tens of arcsec) are of particular interest to probe intermediate and high redshift clusters. Such observations will be carried out with the millimeter dual-band NIKA2 camera, based on Kinetic Inductance Detectors (KIDs) and to be installed at the IRAM 30-meter telescope in 2015. To demonstrate the potential of such an instrument, we present tSZ observations with the NIKA camera prototype, consisting of two arrays of 132 and 224 detectors observing at 140 and 240 GHz with a 18.5 and 12.5 arcsec angular resolution, respectively. The cluster RX J1347.5-1145 was observed simultaneously at 140 and 240 GHz. We used a spectral decorrelation technique to remove the atmospheric noise and obtain a map of the cluster at 140 GHz. The efficiency of this procedure has been characterized through realistic simulations of the observations. The obtained 140 GHz map presents a decrement at the cluster position consistent with the tSZ nature of the signal. We used this map to study the pressure distribution of the cluster by fitting a gNFW model to the data. Subtracting this model from the map, we confirm that RX J1347.5-1145 is an ongoing merger, in agreement with and complementary to previous tSZ and X-ray observations. For the first time, we demonstrate the tSZ capability of KIDs based instruments. The NIKA2 camera, with about 5000 detectors and a 6.5 arcmin field of view, will be a well-suited instrument for in-depth studies of the Intra Cluster Medium from intermediate to distant clusters and so for the follow-up of recently detected clusters by the Planck satellite.
    Astronomy and Astrophysics 10/2013; 569. DOI:10.1051/0004-6361/201322902 · 4.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: NIKA (New IRAM KID Arrays) is a dual-band imaging instrument installed at the IRAM (Institut de RadioAstronomie Millimetrique) 30-meter telescope at Pico Veleta (Spain). Two distinct Kinetic Inductance Detectors (KID) focal planes allow the camera to simultaneously image a field-of-view of about 2 arc-min in the bands 125 to 175 GHz (150 GHz) and 200 to 280 GHz (240 GHz). The sensitivity and stability achieved during the last commissioning Run in June 2013 allows opening the instrument to general observers. We report here the latest results, in particular in terms of sensitivity, now comparable to the state-of-the-art Transition Edge Sensors (TES) bolometers, relative and absolute photometry. We describe briefly the next generation NIKA-2 instrument, selected by IRAM to occupy, from 2015, the continuum imager/polarimeter slot at the 30-m telescope.
    Journal of Low Temperature Physics 10/2013; 176(5-6). DOI:10.1007/s10909-013-0985-4 · 1.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We discuss the detector system for the Stratospheric Kinetic Inductance Polarimeter (SKIP). SKIP is a proposed balloon-borne experiment designed to study the cosmic microwave background, the cosmic infrared background and Galactic dust emission by observing 1133 square degrees of sky in the Northern Hemisphere with launches from Kiruna, Sweden. The instrument contains 2317 single-polarization, horn-coupled, aluminum lumped-element kinetic inductance detectors (LEKIDs). The LEKIDs will be maintained at 100 mK with an adiabatic demagnetization refrigerator. The polarimeter operates in two configurations, one sensitive to a spectral band centered on 150 GHz and the other sensitive to 260 and 350 GHz bands. The detector readout system is based on the ROACH-1 board, and the detectors will be biased below 300 MHz. The detector array is fed by an F/2.4 crossed-Dragone telescope with a 500 mm aperture yielding a 15 arcmin FWHM beam at 150 GHz. To minimize detector loading and maximize sensitivity, the entire optical system will be cooled to 1 K. Linearly polarized sky signals will be modulated with a metal-mesh half-wave plate that is mounted at the telescope aperture and rotated by a superconducting magnetic bearing. The observation program consists of at least two, five-day flights, and 150 GHz observations are planned to begin in 2017.
    Journal of Low Temperature Physics 08/2013; 176(5-6). DOI:10.1007/s10909-013-1014-3 · 1.04 Impact Factor
  • Source

Publication Stats

915 Citations
178.74 Total Impact Points

Institutions

  • 2013–2014
    • Arizona State University
      • Department of Physics
      Phoenix, Arizona, United States
  • 2003–2014
    • Cardiff University
      • School of Physics and Astronomy
      Cardiff, Wales, United Kingdom
  • 2010–2012
    • University of South Wales
      Понтиприте, Wales, United Kingdom
    • University of Pittsburgh
      • Physics and Astronomy
      Pittsburgh, Pennsylvania, United States
    • Pontifical Catholic University of Chile
      • Facultad de Física
      CiudadSantiago, Santiago, Chile
  • 2001
    • University of Wales
      Cardiff, Wales, United Kingdom
  • 1999
    • University of Massachusetts Amherst
      Amherst Center, Massachusetts, United States
  • 1992
    • University of California, Berkeley
      • Department of Physics
      Berkeley, CA, United States