Are you Veronika Tanhauserova?

Claim your profile

Publications (2)2.64 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Guinea pigs (Cavia porcellus) were treated with haloperidol (HP), and free radical (FR) and ferric reducing antioxidant power (FRAP) assays were used to determine oxidative stress levels. Furthermore, the superoxide dismutase (SOD), glutathione reductase (GR) and glutathione-S-transferase (GST) activity levels were detected and glucose levels and the reduced and oxidized glutathione (GSH/GSSG) ratio were measured in HP-treated and untreated guinea pigs. The present study demonstrated that the administration of HP causes significant oxidative stress in guinea pigs (P=0.022). In animals treated with HP, the activity of GST was significantly increased compared with a placebo (P= 0.007). The elevation of SOD and GR activity levels and increase in the levels of glutathione (GSH) in HP-treated animals were not statistically significant. In the HP-untreated animals, a significant positive correlation was observed between oxidative stress detected by the FR method and GST (r=0.88, P=0.008) and SOD (r=0.86, P= 0.01) activity levels, respectively. A significant negative correlation between the levels of plasma glucose and oxidative stress detected by the FRAP method was observed (r=-0.78, P=0.04). Notably, no significant correlations were observed in the treated animals. In the HP-treated group, two subgroups of animals were identified according to their responses to oxidative stress. The group with higher levels of plasma HP had higher enzyme activity and reactive oxygen species production compared with the group with lower plasma levels of HP. The greatest difference in activity (U/μl) between the two groups of animals was for GR.
    Experimental and therapeutic medicine 02/2013; 5(2):479-484. · 0.34 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Several typical characteristics of prostate tissue have been identified including the ability to accumulate zinc(II). However, this feature of prostate cells is lost during carcinogenesis and, thus, prostate cells are unable to accumulate zinc(II) ions in high levels. Therefore, we can expect that zinc(II) ions can significantly contribute to the progression of tumour disease and to the ability of prostate cell lines to metastasize. In this study, we aimed our attention on determining the expression of Bcl-2, c-Fos, c-Jun, Ki-67, NF-κB and p53 genes in two prostate cell lines, as the 22Rv1 cell line, a model of aggressive partially androgen-sensitive prostate cancer and the PNT1A cell line, a normal prostate cell line model. Moreover, we were interested in the mechanisms through which exposure of these cell lines to zinc(II) ions could influence expression of the above-mentioned genes. We found that zinc(II) ions caused elevated expression of Ki-67, a marker of proliferation, extremely low expression of p53, high expression of Bcl-2 and no changes in the expression of p53. Our experimental data show different effect of zinc(II) ions on expression of the above-mentioned regulatory genes, which may give us more information on their impact on cancer development and progression with possible using for cancer therapy.
    Oncology Reports 07/2012; 28(3):806-14. · 2.30 Impact Factor