Seon Rang Woo

Korea Institute of Radiological & Medical Sciences, Sŏul, Seoul, South Korea

Are you Seon Rang Woo?

Claim your profile

Publications (12)43.84 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: β-Transducin repeat-containing protein (β-TrCP), an E3 ligase, promotes the degradation of substrate proteins in response to various stimuli. Even though several β-TrCP substrates have been identified to date, limited information of its upstream regulators is available. Here, we showed that SIRT1 suppresses β-TrCP protein synthesis via post-translational degradation. SIRT1 depletion led to a significant increase in the β-TrCP accumulation without affecting the mRNA level. Consistently, β-TrCP protein accumulation induced by resveratrol was further enhanced upon SIRT1 depletion. Rescue of SIRT1 reversed the effect of resveratrol, leading to reduced β-TrCP protein levels. Proteasomal inhibition led to recovery of β-TrCP in cells with SIRT1 overexpression. Notably, the recovered β-TrCP colocalized mostly with SIRT1. Thus, SIRT1 acts as a negative regulator of β-TrCP synthesis via promoting protein degradation.
    Biochemical and Biophysical Research Communications 11/2013; · 2.41 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The synthetic machinery of ATF4 (activating transcription factor 4) is activated in response to various stress conditions involved in nutrient restriction, endoplasmic reticulum homeostasis and oxidation. Stress-induced inhibition of proteasome activity triggers the unfolded protein response and endoplasmic reticulum stress where ATF4 is crucial for consequent biological events. In the current study, we showed that the NAD+-dependent deacetylase, SIRT1, suppresses ATF4 synthesis during proteasome inhibition. SIRT1 depletion via transfection of specific siRNA into HeLa cells resulted in a significant increase in ATF4 protein, which was observed specifically in the presence of the proteasome inhibitor, MG132. Consistent with SIRT1 depletion data, transient transfection of cells with SIRT1-overexpressing plasmid induced a decrease in the ATF4 protein level in the presence of MG132. Interestingly, however, ATF4 mRNA was not affected by SIRT1, even in the presence of MG132, indicating that SIRT1-induced suppression of ATF4 synthesis occurs under post-transcriptional control. Accordingly, we propose that SIRT1 serves as a negative regulator of ATF4 protein synthesis at the post-transcriptional level, which is observed during stress conditions, such as proteasome inhibition.
    Journal of Microbiology and Biotechnology 10/2013; · 1.40 Impact Factor
  • Source
  • [Show abstract] [Hide abstract]
    ABSTRACT: Upon apoptotic stimulation, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a cytosolic enzyme normally active in glycolysis, translocates into the nucleus and activates an apoptotic cascade therein. In the present work, we show that SIRT1 prevents nuclear translocation of GAPDH via interaction with GAPDH. SIRT1 depletion triggered nuclear translocation of cytosolic GAPDH even in the absence of apoptotic stress. Such translocation was not, however, observed when SIRT1 enzymatic activity was inhibited, indicating that SIRT1 protein per se, rather than the deacetylase activity of the protein, is required to inhibit GAPDH translocation. Upon irradiation, SIRT1 prevented irradiation-induced nuclear translocation of GAPDH, accompanied by interaction of SIRT1 and GAPDH. Thus, SIRT1 functions to retain GAPDH in the cytosol, protecting the enzyme from nuclear translocation via interaction with these two proteins. This serves as a mechanism whereby SIRT1 regulates cell survival upon induction of apoptotic stress by means that include irradiation.
    Biochemical and Biophysical Research Communications 07/2012; 424(4):681-6. · 2.41 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Chronic oxidative stress from reactive oxygen species (ROS) produced by the mitochondria promotes hepatocarcinogenesis and tumor progression. However, the exact mechanism by which mitochondrial ROS contributes to tumor cell invasion is not known. We investigated the role of ROS modulator 1 (Romo1) in hepatocellular carcinoma (HCC) development and tumor cell invasiveness. We performed real-time, semi-quantitative, reverse transcriptase polymerase chain reaction; invasion and luciferase assays; and immunofluorescence and immunohistochemical analyses. The formation of pulmonary metastatic nodules after tumor cell injection was tested in severe combined immunodeficient mice. We analyzed Romo1 expression in HCC cell lines and tissues (n = 95). Expression of Romo1 was increased in HCC cells, compared with normal human lung fibroblast cells. Exogenous expression of Romo1 in HCC cells increased their invasive activity, compared with control cells. Knockdown of Romo1 in Hep3B and Huh-7 HCC cells reduced their invasive activity in response to stimulation with 12-O-tetradecanoylphorbol-13-acetate. Levels of Romo1 were increased compared with normal liver tissues in 63 of 95 HCC samples from patients. In HCC samples from patients, there was an inverse correlation between Romo1 overexpression and patient survival times. Increased levels of Romo1 also correlated with vascular invasion by the tumors, reduced differentiation, and larger tumor size. Romo1 is a biomarker of HCC progression that might be used in diagnosis. Reagents that inhibit activity of Romo1 and suppress mitochondrial ROS production, rather than eliminate up-regulated intracellular ROS, might be developed as cancer therapies.
    Gastroenterology 06/2012; 143(4):1084-1094.e7. · 12.82 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: During genotoxic stress, reactive oxygen species hydrogen peroxide (H(2)O(2)) is a prime mediator of the DNA damage response. Telomeres function both to assist in DNA damage repair and to inhibit chromosomal end-to-end fusion. Here, we show that telomere dysfunction renders cells susceptible to H(2)O(2), via generation of multichromosomal fusion and chromosomal fragments. H(2)O(2) caused formation of multichromosomal end-to-end fusions involving more than three chromosomes, preferentially when telomeres were erosive. Interestingly, extensive chromosomal fragmentation (yielding small-sized fragments) occurred only in cells exhibiting such multichromosomal fusions. Telomeres were absent from fusion points, being rather present in the small fragments, indicating that H(2)O(2) cleaves chromosomal regions adjacent to telomeres. Restoration of telomere function or addition of the antioxidant N-acetylcysteine prevented development of chromosomal aberrations and rescued the observed hypersensitivity to H(2)O(2). Thus, chromosomal regions adjacent to telomeres become sensitive to reactive oxygen species hydrogen peroxide when telomeres are dysfunctional, and are cleaved to produce multichromosomal fusions and small chromosomal fragments bearing the telomeres.
    Biochemical and Biophysical Research Communications 11/2011; 417(1):204-10. · 2.41 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Proteins involved in the G1 phase of the cell cycle are aberrantly expressed, sometimes in mutated forms, in human cancers including human hepatocellular carcinoma. Upon attack by a DNA-damaging anticancer drug, a cell arrests at the G1 phase; this is a safety feature prohibiting entry of DNA-damaged cells into S-phase. p21WAF1/CIP1 prevents damaged cells from progressing to the next cell cycle. Here, we show that, in response to mitomycin C and doxorubicin, human hepatocellular carcinoma cells generate conflicting signals, mediated by cyclin E and p21WAF1/CIP1, which respectively accelerates and represses cell cycle transition. Exposure to these anticancer drugs led to rapid accumulation of cyclin E in both p53-proficient HepG2 and p53-deficient Hep3B cells. Such anticancer drug-induced cyclin E accumulation influenced the G1-S-phase transition, but not DNA fragmentation-mediated death. In p53-proficient HepG2 cells, accumulation of cyclin E was followed by an increase in the level of p53-dependent p21WAF1/CIP1, thereby inhibiting further the G1-S-phase transition. Sublethal drug concentrations also induced rapid accumulation of cyclin E, but p21WAF1/CIP1 accumulation was delayed, further facilitating the G1-S-phase transition. Eventually, most cells arrested in G2/M. Thus, mitomycin C- or doxorubicin-induced conflicting signals, mediated by cyclin E and p21WAF1/CIP1, are in play in human hepatocellular carcinoma cells. Damaged G1 cells either immediately enter S-phase, or do not do so at all, depending on the extent of DNA damage.
    International Journal of Oncology 09/2011; 40(1):277-86. · 2.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Protein arginine methylation is important for a variety of cellular processes including transcriptional regulation, mRNA splicing, DNA repair, nuclear/cytoplasmic shuttling and various signal transduction pathways. However, the role of arginine methylation in protein biosynthesis and the extracellular signals that control arginine methylation are not fully understood. Basic fibroblast growth factor (bFGF) has been identified as a potent stimulator of myofibroblast dedifferentiation into fibroblasts. We demonstrated that symmetric arginine dimethylation of eukaryotic elongation factor 2 (eEF2) is induced by bFGF without the change in the expression level of eEF2 in mouse embryo fibroblast NIH3T3 cells. The eEF2 methylation is preceded by ras-raf-mitogen-activated protein kinase kinase (MEK)-extracellular signal-regulated kinase (ERK1/2)- p21Cip/WAF1 activation, and suppressed by the mitogenactivated protein kinase (MAPK) inhibitor PD98059 and p21Cip/WAF1 short interfering RNA (siRNA). We determined that protein arginine methyltransferase 7 (PRMT7) is responsible for the methylation, and that PRMT5 acts as a coordinator. Collectively, we demonstrated that eEF2, a key factor involved in protein translational elongation is symmetrically arginine-methylated in a reversible manner, being regulated by bFGF through MAPK signaling pathway.
    Experimental and Molecular Medicine 07/2011; 43(10):550-60. · 2.57 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Following DNA damage, p53 translocates to the cytoplasm and mitochondria, where it triggers transcription-independent apoptosis by binding to Bcl-2 family proteins. However, little is known about how this exonuclear function of p53 is regulated. Here, we identify and characterize a p53-interacting protein called Hades, an E3 ligase that interacts with p53 in the mitochondria. Hades reduces p53 stability via a mechanism that requires its RING-finger domain with ubiquitin ligase activity. Hades polyubiquitinates p53 in vitro independent of Mdm2 and targets a critical lysine residue in p53 (lysine 24) distinct from those targeted by Mdm2. Hades inhibits a p53-dependent mitochondrial cell death pathway by inhibiting p53 and Bcl-2 interactions. These findings show that Hades-mediated p53 ubiquitination is a novel mechanism for negatively regulating the exonuclear function of p53.
    Cell death and differentiation 05/2011; 18(12):1865-75. · 8.24 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The tissue environment in the region of hepatocellular carcinoma (HCC) influences both vascular invasion and recurrence. Thus, HCC patient prognosis depends on the characteristics not only of the tumor but also those of adjacent surrounding liver tissue. Expression profiles of both tumor and adjacent liver tissue following curative resection were measured to discriminate 56 hepatitis B virus-positive HCC patients into subgroups based on survival risk. This approach was further tested in 40 patients. Expression profiles of both tumor and adjacent liver tissue successfully discriminated 56 training samples into 2 subgroups, those at low- or high-risk for survival and recurrence. However, the prognostic gene set selected for tumor tissue was quite different from that for adjacent tissues. This variation in prognostic genes resulted in a change in allocation of patients within each low- or high-risk group. Combination of survival subgroups from tumor and adjacent liver tissue significantly improved the prediction of prognostic outcome. This integrative approach was confirmed to be effective in a further 40 test patients. A clinicopathological study showed that survival subgroups divided by tumor and adjacent liver tissue gene expression were also statistically associated with UICC stage and extent of cell differentiation, respectively. Variation in gene expression during the nontumor stage as well as the tumor stage may affect the prognosis of HCC patients, and integration of the gene expression profiles of HCC and adjacent liver tissue increases discriminatory effectiveness between patient groups, predicting clinical outcomes with enhanced statistical reliability.
    Annals of Surgical Oncology 04/2011; 19 Suppl 3:S328-38. · 4.12 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The anticancer effect of paclitaxel is attributable principally to irreversible promotion of microtubule stabilization and is hampered upon development of chemoresistance by tumor cells. Telomere shortening, and eventual telomere erosion, evoke chromosomal instability, resulting in particular cellular responses. Using telomerase-deficient cells derived from mTREC-/-p53-/- mice, here we show that, upon telomere erosion, paclitaxel propagates chromosomal instability by stimulating chromosomal end-to-end fusions and delaying the development of multinucleation. The end-to-end fusions involve both the p- and q-arms in cells in which telomeres are dysfunctional. Paclitaxel-induced chromosomal fusions were accompanied by prolonged G2/M cell cycle arrest, delayed multinucleation, and apoptosis. Telomere dysfunctional cells with mutlinucleation eventually underwent apoptosis. Thus, as telomere erosion proceeds, paclitaxel stimulates chromosomal fusion and instability, and both apoptosis and chemosensitization eventually develop.
    Biochemical and Biophysical Research Communications 01/2011; 404(2):615-21. · 2.41 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A combination of a radiotherapeutic regimen with telomerase inhibition is valuable when tumor cells are to be sensitized to radiation. Here, we describe cell clones unresponsive to radiosensitization after telomere shortening. After extensive division of individual transformed clones of mTERC-/- cells, about 22% of clones were unresponsive to radiosensitization even though telomerase action was inhibited. The telomere lengths of unsensitized mTERC-/- clones were reduced, as were those of most sensitized clones. However, the unsensitized clones did not exhibit chromosomal end-to-end fusion to the extent noted in all sensitized clones. Thus, a defense mechanism preventing telomere erosion is operative even when telomeres become shorter under conditions of telomerase deficiency, and results in unresponsiveness to the radiosensitization generally mediated by telomere shortening.
    Biochemical and Biophysical Research Communications 09/2010; 402(2):198-202. · 2.41 Impact Factor