Adny Henrique Silva

Federal University of Santa Catarina, Nossa Senhora do Destêrro, Santa Catarina, Brazil

Are you Adny Henrique Silva?

Claim your profile

Publications (4)21.6 Total impact

  • [show abstract] [hide abstract]
    ABSTRACT: Chalcones, naturally occurring open-chain flavonoids abundant in plants, have demonstrated anticancer activity in multiple tumor cells. In a previous work, the potential anticancer activity of three naphthylchalcones named R7, R13 and R15 was shown. In this study, the mechanism of actions of these chalcones was originally shown. The chalcones presented concentration and time-dependent cytotoxicity. To determine the type of cell death induced by chalcones, we assessed a series of assays including measurements of the caspase-8, -9 and -12 activities, expression of important apoptosis-related genes and proteins, changes in the cell calcium concentration and cytochrome c release. The activities of caspase-8, -9 and -12 increased after the treatment of L1210 cells with the three compounds. Chalcones R7 and R13 induced an increase of pro-apoptotic proteins Bax, Bid and Bak (only chalcone R13), as well as a decrease in anti-apoptotic Bcl-2 expression. These chalcones also induced an increase in Fas and a decrease in p21 and p53 expression. Chalcone R15 seems to act by a different mechanism to promote cell death, as it did not change the mitochondrion-related proteins, nor did it induce the cytochrome c release. All compounds induced an increase in cell calcium concentration and an increase in CHOP expression, which together with an increase in caspase-12 activity, suggest that chalcones could induce an endoplasmic reticulum (ER) stress. Taken together, these results suggest that chalcones induce apoptosis by different pathways, being an interesting strategy to suggest for cancer therapy.
    Toxicology in Vitro 02/2014; · 2.65 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Solid lipid nanoparticles (SLNs) are an alternative drug delivery system compared to emulsions, liposomes and polymeric nanoparticles. Due to their unique sizes and properties, SLNs offer possibility to develop new therapeutic approaches. The ability to incorporate drugs into nanocarriers offers a new prototype in drug delivery that could be used for drug targeting. However, toxicity of these new formulations has not been investigated thus far. In this study, we carried out an in vivo toxicity study. For that mice were divided into three groups and treated intraperitoneally with triestearin-based SLNs (TN), natural wax-based SLNs (VN) or vehicle for 10 days. After that, necropsies, histopathological and hematological analysis, as well as hepatic and renal functions were performed. Our results indicated that both TN and VN were absorbed post-exposure and induced an inflammatory response in adipose tissue. However, histopathological analysis demonstrated the absence of toxicity in both treated groups. In addition, the body weights were similar among the groups and low toxicity was also indicated by the unchanged serum biochemical parameters. This study provides a preliminary data for toxicological studies of two different SLNs in long-term in vivo exposure. However, further studies should be conducted in order to investigate the inflammatory response in order to establish the safety of these SLNs Read More: http://informahealthcare.com/doi/abs/10.3109/17435390.2013.782076
    Nanotoxicology 03/2013; · 7.84 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Abstract Solid lipid nanoparticles (SLNs) are an alternative drug delivery system compared to emulsions, liposomes, and polymeric nanoparticles. Due to their unique sizes and properties, SLN offer possibility to develop new therapeutic approaches. The ability to incorporate drugs into nanocarriers offers a new prototype in drug delivery that could be used for drug targeting. However, toxicity of these new formulations has not been investigated thus far. In this study, we carried out an in vivo toxicity study. For that, mice were divided into three groups and treated intraperitoneally with triestearin-based SLNs (TN), natural wax-based SLNs (VN) or vehicle for 10 days. After that, necropsies, histopathological and hematological analysis, as well as hepatic and renal functions were performed. Our results indicated that both TN and VN were absorbed post-exposure and induced an inflammatory response in adipose tissue. However, histopathological analysis demonstrated absence of toxicity in both treated groups. Also, the body weights were similar among the groups and low toxicity was also indicated by the unchanged serum biochemical parameters. This study provides a preliminary data for toxicological studies of two different SLNs in long-term in vivo exposure. However, further studies should be conducted in order to investigate the inflammatory response in order to establish the safety of these SLNs.
    Nanotoxicology 03/2013; · 7.84 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: This study was undertaken to address the current deficient knowledge of cellular response to solid lipid nanoparticles (SLNs) exposure. We investigated the cytotoxicity of several SLNs formulations in two fibroblast cell lineages, Vero and MDCK. Several methods were used to explore the mechanisms involved in this cytotoxic process, including cell viability assays, flow cytometry and ROS generation assessment. Among nanoparticles tested, two of them (F4 and F5) demonstrated more cytotoxic effects in both cell lineages. The cell viability assays suggested that F4 and F5 interfere in cell mitochondrial metabolism and in lysosomal activity. In addition, F5 decreased the percentage of MDCK cells in G0/G1 and G2/M phases, with a marked increase in the Sub/G1 population, suggesting DNA fragmentation. Regarding F4, although IC(50) was higher (~700 μg/mL), this formulation affected mitochondrial membrane potential for Vero cells. However, the IC(50) of F5 was around 250 μg/mL, suggesting the effect of SDS (sodium dodecyl sulfate) present in the formulation. In summary, the nanoparticles tested here appears to be biocompatible, with the exception of F5. Further studies are required to elucidate the in vivo effects of these nanoscale structures, in order to evaluate or predict the connotation of their increased and widespread use.
    Science of The Total Environment 06/2012; 432:382-8. · 3.26 Impact Factor

Publication Stats

4 Citations
127 Downloads
364 Views
21.60 Total Impact Points

Institutions

  • 2012–2014
    • Federal University of Santa Catarina
      • Departamento de Ciências Farmacêuticas
      Nossa Senhora do Destêrro, Santa Catarina, Brazil