V. Tatischeff

Université Paris-Sud 11, Orsay, Île-de-France, France

Are you V. Tatischeff?

Claim your profile

Publications (131)299.16 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: We study a possible connection between processes of gamma-ray emission and hydrogen ionization in a few pc of central region around Sgr A*. Previous investigations showed there is a discrepancy between interpretation of gamma-ray and ionization data if gamma-rays are generated by proton-proton collisions. Here we provided analysis of processes of ionization and emission basing on analytical and numerical calculations of kinetic equations which describe processes of particle propagation and their energy losses. The origin of gamma rays could be either due to collisions of relativistic protons with the dense gas of the surrounding circumnuclear disk (CND) or bremsstrahlung and inverse Compton scattering of relativistic electrons. The hydrogen ionization in this case is produced by a low energy component of the CR spectrum. We found that if ionization is produced by protons the expected ionization rate of hydrogen in the CND is of the same order as derived from IR observations. So we do not see any discrepancy between the gamma-ray and ionization data for the hadronic model. In the case of ionization by electrons we obtained the ionization rate one order of magnitude higher than follows from the IR data. In principle, a selection between the leptonic and hadronic interpretations can be performed basing on measurements of radio and X-ray fluxes from this region because the leptonic and hadronic models give different values of the fluxes from there. We do not exclude that gamma-ray production and hydrogen ionization in the CND are due to a past activity of Sgr A* which occurred about 100 year ago. Then we hypothesize that there may be connection between a past proton eruption and a flux of hard X-rays emitted by Sgr A* hundred years ago as follows from the observed time variability of the iron line seen in the direction of GC molecular clouds.
    12/2014;
  • Vincent Tatischeff, Jean Duprat, Nicolas de Séréville
    [Show abstract] [Hide abstract]
    ABSTRACT: The presence of short-lived radionuclides in the early solar system provides important information about the astrophysical environment in which the solar system formed. The discovery of now extinct $^{10}$Be in calcium-aluminum-rich inclusions (CAIs) with Fractionation and Unidentified Nuclear isotope anomalies (FUN-CAIs) suggests that a baseline concentration of $^{10}$Be in the early solar system was inherited from the protosolar molecular cloud. In this paper, we first show that the $^{10}$Be recorded in FUN-CAIs cannot have been produced in situ by cosmic-ray (CR) irradiation of the FUN-CAIs themselves. We then show that trapping of Galactic CRs (GCRs) in the collapsing presolar cloud core induced a negligible $^{10}$Be contamination of the protosolar nebula. Irradiation of the presolar molecular cloud by background GCRs produced a steady-state $^{10}$Be/$^9$Be ratio ~2.3 times lower than the ratio recorded in FUN-CAIs, which suggests that the presolar cloud was irradiated by an additional source of CRs. Considering a detailed model for CR acceleration in a supernova remnant (SNR), we find that the $^{10}$Be abundance recorded in FUN-CAIs can be explained within two alternative scenarios: (i) the irradiation of a giant molecular cloud by CRs produced by >50 supernovae exploding in a superbubble of hot gas generated by a large star cluster of at least 20,000 members and (ii) the irradiation of the presolar molecular cloud by freshly accelerated CRs escaped from an isolated SNR at the end of the Sedov-Taylor phase. The second model naturally provides an explanation for the injection of other short-lived radionuclides of stellar origin into the cold presolar molecular cloud ($^{26}$Al, $^{41}$Ca and $^{36}$Cl) and is in agreement with the solar system originating from the collapse of a molecular cloud shocked by a supernova blast wave.
    The Astrophysical Journal 10/2014; 796(2). · 6.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this work the efficiency of particle acceleration at the forward shock right after the SN outburst for the particular case of the well-known SN 1993J is analyzed. Plasma instabilities driven by the energetic particles accelerated at the shock front grow over intraday timescales and drive a fast amplification of the magnetic field at the shock, that can explain the magnetic field strengths deduced from the radio monitoring of the source. The maximum particle energy is found to reach 1-10 PeV depending on the instability dominating the amplification process. We derive the time dependent particle spectra and the associated hadronic signatures of secondary particles arising from proton proton interactions. We find that the Cherenkov Telescope Array (CTA) should easily detect objects like SN 1993J in particular above 1 TeV, while current generation of Cherenkov telescopes such as H.E.S.S. could only marginally detect such events. The gamma-ray signal is found to be heavily absorbed by pair production process during the first week after the outburst. We predict a low neutrino flux above 10 TeV, implying a detectability horizon with a KM3NeT-type telescope of 1 Mpc only. We finally discuss the essential parameters that control the particle acceleration and gamma-ray emission in other type of SNe.
    09/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: PACT is a Pair And Compton Telescope that aims to make a sensitive survey of the gamma-ray sky between 100 keV and 100 MeV. It will be devoted to the detection of radioactivity lines from present and past supernova explosions, the observation of thousands of new blazars, and the study of polarized radiations from gamma-ray bursts, pulsars and accreting black holes. It will reach a sensitivity of one to two orders of magnitude lower than COMPTEL/CGRO (e.g. about 50 times lower for the broad-band, survey sensitivity at 1 MeV after 5 years). The concept of PACT will be proposed for the AstroMeV mission in the framework of the M4 ESA Call. It is based upon three main components: a silicon-based gamma-ray tracker, a crystal-based calorimeter (e.g. CeBr3:Sr), and an anticoincidence detector made of plastic scintillator panels. Prototypes of these detector planes are currently tested in the laboratories.
    SPIE Astronomical Telescopes + Instrumentation; 07/2014
  • [Show abstract] [Hide abstract]
    ABSTRACT: The origin of the iron fluorescent line at 6.4 keV from an extended region surrounding the Arches cluster is debated and the non-variability of this emission up to 2009 has favored the low-energy cosmic-ray origin over a possible irradiation by hard X-rays. By probing the variability of the Arches cloud non-thermal emission in the most recent years, including a deep observation in 2012, we intend to discriminate between the two competing scenarios. We perform a spectral fit of XMM-Newton observations collected from 2000 to 2013 in order to build the Arches cloud lightcurve corresponding to both the neutral Fe Kalpha line and the X-ray continuum emissions. We reveal a 30% flux drop in 2012, detected with more than 4 sigma significance for both components. This implies that a large fraction of the studied non-thermal emission is due to the reflection of an X-ray transient source.
    Monthly Notices of the Royal Astronomical Society Letters 06/2014; 443(1). · 5.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Radioactive beams of $^{14}$O and $^{15}$O were used to populate the resonant states 1/2$^+$, 5/2$^+$ and $0^-,1^-,2^-$ in the unbound $^{15}$F and $^{16}$F nuclei respectively by means of proton elastic scattering reactions in inverse kinematics. Based on their large proton spectroscopic factor values, the resonant states in $^{16}$F can be viewed as a core of $^{14}$O plus a proton in the 2s$_{1/2}$ or 1d$_{5/2}$ shell and a neutron in 1p$_{1/2}$. Experimental energies were used to derive the strength of the 2s$_{1/2}$-1p$_{1/2}$ and 1d$_{5/2}$-1p$_{1/2}$ proton-neutron interactions. It is found that the former changes by 40% compared with the mirror nucleus $^{16}$N, and the second by 10%. This apparent symmetry breaking of the nuclear force between mirror nuclei finds explanation in the role of the large coupling to the continuum for the states built on an $\ell=0$ proton configuration.
    06/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: The International Gamma-Ray Astrophysics Laboratory (INTEGRAL) is a European Space Agency hard X-ray/γ-ray observatory for astrophysics, covering photon energies from 15 keV to 10 MeV. It was launched in 2002, and since then the Bismuth Germanate (BGO) detectors of the Anti-Coincidence Shield (ACS) of the Spectrometer on INTEGRAL (SPI) have detected many hard X-ray (HXR) bursts from the Sun, producing light curves at photon energies above ≈ 100 keV. The spacecraft has a highly elliptical orbit, providing long uninterrupted observing (about 90 % of the orbital period) with nearly constant background due to the shorter time needed to cross Earth’s radiation belts. However, because of technical constraints, INTEGRAL cannot be pointed at the Sun, and high-energy solar photons are always detected in nonstandard observation conditions. To make the data useable for solar studies, we have undertaken a major effort to specify the observing conditions through Monte Carlo simulations of the response of ACS for several selected flares. We checked the performance of the model employed for the Monte Carlo simulations using the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) observations for the same sample of solar flares. We conclude that although INTEGRAL was not designed to perform solar observations, ACS is a useful instrument for solar-flare research. In particular, its relatively large effective area allows determining good-quality HXR/γ-ray light curves for X- and M-class solar flares and, in some cases, probably also for C-class flares.
    Solar Physics 05/2014; 289(5). · 3.26 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The observed primordial 7Li abundance in metal-poor halo stars is found to be lower than its Big-Bang nucleosynthesis (BBN) calculated value by a factor of approximately three. Some recent works suggested the possibility that this discrepancy originates from missing resonant reactions which would destroy the 7Be, parent of 7Li. The most promising candidate resonances which were found include a possibly missed 1- or 2- narrow state around 15 MeV in the compound nucleus 10C formed by 7Be+3He and a state close to 7.8 MeV in the compound nucleus 11C formed by 7Be+4He. In this work, we studied the high excitation energy region of 10C and the low excitation energy region in 11C via the reactions 10B(3He,t)10C and 11B(3He,t)11C, respectively, at the incident energy of 35 MeV. Our results for 10C do not support 7Be+3He as a possible solution for the 7Li problem. Concerning 11C results, the data show no new resonances in the excitation energy region of interest and this excludes 7Be+4He reaction channel as an explanation for the 7Li deficit.
    Physical Review C 12/2013; Physical Review C(88). · 3.72 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: INTEGRAL is a hard X-ray/gamma-ray observatory for astrophysics (ESA) covering photon energies from 15 keV to 10 MeV. It was launched in 2002 and since then the BGO detectors of the Anti-Coincidence shield (ACS) of the SPI spectrometer have detected many hard X-ray (HXR) bursts from the Sun, producing lightcurves at photon energies above ~ 100 keV. The spacecraft has a highly elliptical orbit, providing a long uninterrupted observing time (about 90% of the orbital period) with nearly constant background due to the reduction of the crossing time of the Earth's radiation belts. However, due to technical constraints, INTEGRAL cannot point to the Sun and high-energy solar photons are always detected in non-standard observation conditions. To make the data useful for solar studies, we have undertaken a major effort to specify the observing conditions through Monte-Carlo simulations of the response of ACS for several selected flares. We check the performance of the model employed for the Monte-Carlo simulations using RHESSI observations for the same sample of solar flares. We conclude that, despite the fact that INTEGRAL was not designed to perform solar observations, ACS is a useful instrument in solar flare research. In particular, its relatively large effective area allows the determination of good-quality HXR/gamma-ray lightcurves for X- and M-class solar flares and, in some cases, probably also for C-class flares.
    08/2013;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This White Paper, submitted to the recent ESA call for science themes to define its future large missions, advocates the need for a transformational leap in our understanding of two key questions in astrophysics: 1) How does ordinary matter assemble into the large scale structures that we see today? 2) How do black holes grow and shape the Universe? Hot gas in clusters, groups and the intergalactic medium dominates the baryonic content of the local Universe. To understand the astrophysical processes responsible for the formation and assembly of these large structures, it is necessary to measure their physical properties and evolution. This requires spatially resolved X-ray spectroscopy with a factor 10 increase in both telescope throughput and spatial resolving power compared to currently planned facilities. Feedback from supermassive black holes is an essential ingredient in this process and in most galaxy evolution models, but it is not well understood. X-ray observations can uniquely reveal the mechanisms launching winds close to black holes and determine the coupling of the energy and matter flows on larger scales. Due to the effects of feedback, a complete understanding of galaxy evolution requires knowledge of the obscured growth of supermassive black holes through cosmic time, out to the redshifts where the first galaxies form. X-ray emission is the most reliable way to reveal accreting black holes, but deep survey speed must improve by a factor ~100 over current facilities to perform a full census into the early Universe. The Advanced Telescope for High Energy Astrophysics (Athena+) mission provides the necessary performance (e.g. angular resolution, spectral resolution, survey grasp) to address these questions and revolutionize our understanding of the Hot and Energetic Universe. These capabilities will also provide a powerful observatory to be used in all areas of astrophysics.
    06/2013;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The study of both supernova remnants and the hot and cold phases of the interstellar medium are essential for understanding the final stages of stellar evolution and their feedback on the evolution of galaxies through injection of energy and heavy elements. These studies are also crucial for understanding the physics of supernovae, their cosmological implication, and the origin of galactic cosmic rays. The unique capabilities of Athena+ will allow us to explore a new parameter space. Spatially-resolved high-resolution spectroscopy using Athena+ X-IFU of young remnants will allow to characterize individual parcels of ejected material in the line of sight in terms of kinematics, ionization and composition, providing access to the three dimensional geometry of the explosion. Athena+ will also allow studying shock physics and particle acceleration in supernova remnants, as well as their interaction with their environment. Athena+ X-IFU will also characterize the ionization mechanisms competing in forming the complex structures of the hot interstellar medium, likely to keep the echo of past star formation activity, both in our Galaxy and nearby ones. For the first time the dust and gas of the densest cold medium, like in the Galactic Centre environment, will be studied. Athena+ X-IFU will observe, along with the Mg K and Si K edges, which are the main tracers of the silicates content of the ISM, the Fe K edge with unprecedented sensitivity and energy-resolution. This will allow us to study for the first time the nature of Fe-bearing dust in such regions.
    06/2013;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We investigate the origin of the diffuse 6.4 keV line emission recently detected by Suzaku and the source of H_2ionization in the diffuse molecular gas of the Galactic Center (GC) region. We show that Fe atoms and H_2 molecules in the diffuse interstellar medium of the GC are not ionized by the same particles. The Fe atoms are most likely ionized by X-ray photons emitted by Sgr A* during a previous period of flaring activity of the supermassive black hole. The measured longitudinal intensity distribution of the diffuse 6.4 keV line emission is best explained if the past activity of Sgr A$* lasted at least several hundred years and released a mean 2-100 keV luminosity > 10^38} erg s^{-1}. The H_2 molecules of the diffuse gas can not be ionized by photons from Sgr A*, because soft photons are strongly absorbed in the interstellar gas around the central black hole. The molecular hydrogen in the GC region is most likely ionized by low-energy cosmic rays, probably protons rather than electrons, whose contribution into the diffuse 6.4 keV line emission is negligible.
    The Astrophysical Journal Letters 06/2013; 771(2). · 6.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The decay of ^{19}O(β^{-}) and ^{19}Ne(β^{+}) implanted in niobium in its superconducting and metallic phases was measured using purified radioactive beams produced by the SPIRAL GANIL facility. Half-lives and branching ratios measured in the two phases are consistent within a 1σ error bar. This measurement casts strong doubts on the predicted strong electron screening in a superconductor, the so-called superscreening. The measured difference in screening potential energy is 110(90) eV for ^{19}Ne and 400(320) eV for ^{19}O. Precise determinations of the half-lives were obtained for ^{19}O, 26.476(9) s, and for ^{19}Ne, 17.254(5) s.
    Physical Review Letters 01/2013; 110(3):032501. · 7.73 Impact Factor
  • V. Tatischeff, A. Decourchelle, G. Maurin
    [Show abstract] [Hide abstract]
    ABSTRACT: We have studied in detail the production of nonthermal line and continuum X-rays by interaction of accelerated electrons and ions with a neutral ambient gas, and have applied the resulting models to XMM-Newton observations of the X-ray emission emanating from the Arches cluster region near the Galactic center. The diffuse X-ray emission prominent in the 6.4keV Fe Kα line surrounding the very massive cluster is likely excited by low-energy cosmic ray ions produced in the ongoing supersonic collision between the star cluster and an adjacent molecular cloud. The nonthermal emission from this region probably offers at present the best available signature for a source of low-energy hadronic cosmic rays in the Galaxy.
    01/2013;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent observations of high ionization rates of molecular hydrogen in diffuse interstellar clouds point to a distinct low-energy cosmic-ray component. Supposing that this component is made of nuclei, two models for the origin of such particles are explored and low-energy cosmic-ray spectra are calculated which, added to the standard cosmic ray spectra, produce the observed ionization rates. The clearest evidence of the presence of such low-energy nuclei between a few MeV per nucleon and several hundred MeV per nucleon in the interstellar medium would be a detection of nuclear \gamma-ray line emission in the range E_ 0.1 - 10 MeV, which is strongly produced in their collisions with the interstellar gas and dust. Using a recent \gamma-ray cross section compilation for nuclear collisions, \gamma-ray line emission spectra are calculated alongside with the high-energy \gamma-ray emission due to {\pi} 0 decay, the latter providing normalization of the absolute fluxes by comparison with Fermi-LAT observations of the diffuse emission above E \gamma = 0.1 GeV. Our predicted fluxes of strong nuclear \gamma-ray lines from the inner Galaxy are well below the detection sensitivies of INTEGRAL, but a detection, especially of the 4.4-MeV line, seems possible with new-generation \gamma-ray telescopes based on available technology. We predict also strong \gamma-ray continuum emission in the 1-8 MeV range, which in a large part of our model space for low-energy cosmic rays exceeds considerably estimated instrument sensitivities of future telescopes.
    The Astrophysical Journal 12/2012; 763(2). · 6.73 Impact Factor
  • Source
    Vincent Tatischeff, Anne Decourchelle, Gilles Maurin
    [Show abstract] [Hide abstract]
    ABSTRACT: The iron line at 6.4 keV provides a valuable spectral diagnostic in several fields of X-ray astronomy. It often results from the reprocessing of external X-rays by a neutral or low-ionized medium, but it can also be excited by impacts of low-energy cosmic rays. This paper aims to provide signatures allowing identification of radiation from low-energy cosmic rays in X-ray spectra showing the 6.4 keV line. We study in detail the production of nonthermal line and continuum X-rays by interaction of accelerated electrons and ions with a neutral ambient gas. Corresponding models are then applied to XMM-Newton observations of the X-ray emission emanating from the Arches cluster region near the Galactic center. Bright 6.4 keV line structures are observed around the Arches cluster. This emission is very likely produced by cosmic rays. We find that it can result from the bombardment of molecular gas by energetic ions, but probably not by accelerated electrons. Using a model of X-ray production by cosmic-ray ions, we obtain a best-fit metallicity of the ambient medium of 1.7 plus-minus 0.2 times the solar metallicity. A large flux of low-energy cosmic ray ions could be produced in the ongoing supersonic collision between the star cluster and an adjacent molecular cloud. We find that a particle acceleration efficiency in the resulting shock system of a few percent would give enough power in the cosmic rays to explain the luminosity of the nonthermal X-ray emission. Depending on the unknown shape of the kinetic energy distribution of the fast ions above 1 GeV per nucleon, the Arches cluster region may be a source of high-energy gamma-rays detectable with the Fermi Gamma-ray Space Telescope. At present, the X-ray emission prominent in the 6.4 keV Fe line emanating from the Arches cluster region probably offers the best available signature for a source of low-energy hadronic cosmic rays in the Galaxy.
    Astronomy and Astrophysics 10/2012; · 5.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The high energy activity in the inner few degrees of the Galactic center is traced by diffuse radio, X-ray and gamma-ray emission. The physical relationship between different components of diffuse gas emitting at multiple wavelengths is a focus of this work. We first present radio continuum observations using Green Bank Telescope and model the nonthermal spectrum in terms of a broken power-law distribution of GeV electrons emitting synchrotron radiation. We show that the emission detected by Fermi is primarily due to nonthermal bremsstrahlung produced by the population of synchrotron emitting electrons in the GeV energy range interacting with neutral gas. The extrapolation of the electron population measured from radio data to low and high energies can also explain the origin of FeI 6.4 keV line and diffuse TeV emission, as observed with Suzaku, XMM-Newton, Chandra and the H.E.S.S. observatories. The inferred physical quantities from modeling multi-wavelength emission in the context of bremsstrahlung emission from the inner 300x120 parsecs of the Galactic center are constrained to have the cosmic ray ionization rate 1-10x10^{-15} s^-1, molecular gas heating rate elevating the gas temperature to 75-200K, fractional ionization of molecular gas 10^{-6} to 10^{-5}, large scale magnetic field 10-20 micro Gauss, the density of diffuse and dense molecular gas 100 and 10^3 cm^{-3} over 300pc and 50pc pathlengths, and the variability of FeI Kalpha 6.4 keV line emission on yearly time scales. Important implications of our study are that GeV electrons emitting in radio can explain the GeV gamma-rays detected by Fermi and that the cosmic ray irradiation model, like the model of the X-ray irradiation triggered by past activity of Sgr A*, can also explain the origin of the variable 6.4 keV emission from Galactic center molecular clouds.
    The Astrophysical Journal 06/2012; 762(1). · 6.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The γ-ray spectra ol the strongest solar flares often show a broad and complex structure in the 0.1-10 MeV region sitting on a bremsstrahlung continuum. This structure is composed of several outstanding narrow lines and of thousands of unresolved narrow and broad lines forming a quasi-continuum. The major part of this emission is due to prompt deexcitation lines following nuclear interactions of accelerated light and heavy ions with the atomic nuclei composing the solar atmosphere. A similar emission is expected from interactions of galactic cosmic rays with the interstellar gas and dust. Experimental nuclear reaction studies coupled with extensive calculations have been done in the last one and a half decade at Orsay for the modelisation of this γ-ray emission. After a description of the nuclear reaction studies the analysis of one solar flare spectrum and predictions for the emission from the inner Galaxy will be presented.
    Journal of Physics Conference Series 05/2012; 366(1):2026-.
  • V. Tatischeff
    [Show abstract] [Hide abstract]
    ABSTRACT: Hadronic cosmic rays of energies below about 100 MeV nucleon-1 are thought to be an important component of the Galactic ecosystem. However, since these particles cannot be detected near Earth due to the solar modulation effect, their composition and flux in the interstellar medium are very uncertain. Atomic interactions of low-energy cosmic rays with interstellar gas can produce a characteristic nonthermal X-ray emission comprising very broad lines from de-excitations in fast ions following charge exchange. We suggest that broad lines at ˜0.57 and ˜0.65 keV could be detected from a dark molecular cloud in the local interstellar medium. These lines would be produced by fast oxygen ions of kinetic energies around 1 MeV nucleon-1.
    Astronomische Nachrichten 04/2012; · 1.40 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: SEPServer is set out to make the first database of particle and corresponding EM observations of solar energetic particle (SEP) events over roughly three solar cycles. It will also provide users with results from the scientific analysis of multiple datasets using different observational and simulation based methods. Therefore, SEPServer will lead to new perspectives of scientific analysis and will serve as a new asset valuable for SEP and Space Weather research. In this contribution, the event of 13 July 2005 has been used as a case study, which is a proxy for the overall information that the SEPServer will include and at the same time it reveals the capabilities offered to the future users of SEPServer. The analysis of the 13 July 2005 event - focusing on the data driven analysis, i.e., onset and release time determination from SOHO/ERNE, SOHO/EPHIN and ACE/EPAM together with pitch angle distributions from ACE/EPAM, simulations based on WIND/3DP and ACE/EPAM electrons as well as direct comparison of the observed SEP fluxes with the associated electromagnetic emissions - is performed. The physical interpretation and the interconnection of the experimental and the simulation based results are discussed in detail. The 13 July 2005 case study exemplifies the future usage of SEPServer, which will provide a comprehensive and up to date SEP analysis service. Acknowledgements: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement No 262773 (SEPServer).
    04/2012;

Publication Stats

646 Citations
299.16 Total Impact Points

Institutions

  • 2003–2014
    • Université Paris-Sud 11
      • • Institut de Physique Nucléaire (IPN)
      • • Centre de Spectrométrie Nucléaire et de Spectrométrie de Masse - (CSNSM)
      Orsay, Île-de-France, France
  • 2013
    • Vinča Institute of Nuclear Sciences
      Beograd, Central Serbia, Serbia
  • 2000
    • University of Maryland, College Park
      • Department of Astronomy
      Maryland, United States