Hans Klingemann

University of Massachusetts Boston, Boston, Massachusetts, United States

Are you Hans Klingemann?

Claim your profile

Publications (16)45.93 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Natural killer (NK) cells are an important effector cell type for adoptive cancer immunotherapy. Similar to T cells, NK cells can be modified to express chimeric antigen receptors (CARs) to enhance antitumor activity, but experience with CAR-engineered NK cells and their clinical development is still limited. Here, we redirected continuously expanding and clinically usable established human NK-92 cells to the tumor-associated ErbB2 (HER2) antigen. Following GMP-compliant procedures, we generated a stable clonal cell line expressing a humanized CAR based on ErbB2-specific antibody FRP5 harboring CD28 and CD3? signaling domains (CAR 5.28.z). These NK-92/5.28.z cells efficiently lysed ErbB2-expressing tumor cells in vitro and exhibited serial target cell killing. Specific recognition of tumor cells and antitumor activity were retained in vivo, resulting in selective enrichment of NK-92/5.28.z cells in orthotopic breast carcinoma xenografts, and reduction of pulmonary metastasis in a renal cell carcinoma model, respectively. ?-irradiation as a potential safety measure for clinical application prevented NK cell replication, while antitumor activity was preserved. Our data demonstrate that it is feasible to engineer CAR-expressing NK cells as a clonal, molecularly and functionally well-defined and continuously expandable cell therapeutic agent, and suggest NK-92/5.28.z cells as a promising candidate for use in adoptive cancer immunotherapy.Molecular Therapy (2014); doi:10.1038/mt.2014.219.
    Molecular therapy : the journal of the American Society of Gene Therapy. 11/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Multiple natural killer (NK) cell-based anticancer therapies are currently under development. Here, we compare the efficiency of genetically modified NK-92 cells expressing chimeric antigen receptors (CARs) at killing NK cell-resistant B-lymphoid leukemia cells to the antibody-dependent cell-mediated cytotoxicity (ADCC) of NK-92 cells expressing a high affinity variant of the IgG Fc receptor (FcγRIII). First, we compared in vitro the abilities of NK-92 cells expressing CD20-targeting CARs to kill primary chronic lymphocytic leukemia (CLL) cells derived from 9 patients with active, untreated disease to the cytotoxicity of NK-92 cells expressing FcγRIII combined with either of the anti-CD20 monoclonal antibodies (mAbs) rituximab or ofatumumab. We found that CAR-expressing NK-92 cells effectively kill NK cell-resistant primary CLL cells and that such a cytotoxic response is significantly stronger than that resulting from ADCC. For studying CAR-expressing NK cell-based immunotherapy in vivo, we established xenograft mouse models of residual leukemia using the human BCR-ABL1(+) cell lines SUP-B15 (CD19(+)CD20(-)) and TMD-5 (CD19(+)CD20(+)), two acute lymphoblastic leukemia (ALL) lines that are resistant to parental NK-92 cells. Intravenous injection of NK-92 cells expressing CD19-targeting CARs eliminated SUP-B15 cells, whereas they had no such effect on TMD-5 cells. However, the intrafemoral injection of NK-92 cells expressing CD19-targeting CAR resulted in the depletion of TMD-5 cells from the bone marrow environment. Comparative studies in which NK-92 cells expressing either CD19- or CD20-targeting CARs were directly injected into subcutaneous CD19(+)CD20(+) Daudi lymphoma xenografts revealed that CD20-targeting CAR is superior to its CD19-specific counterpart in controlling local tumor growth. In summary, we show here that CAR-expressing NK-92 cells can be functionally superior to ADCC (as mediated by anti-CD20 mAbs) in the elimination of primary CLL cells. Moreover, we provide data demonstrating that the systemic administration of CAR-expressing NK-92 cells can control lymphoblastic leukemia in immunocompromised mice. Our results also suggest that the direct injection of CAR-expressing NK-92 cells to neoplastic lesions could be an effective treatment modality against lymphoma.
    Oncoimmunology. 10/2013; 2(10):e26527.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Natural killer (NK) cells, either naive or genetically engineered, are increasingly considered for cellular therapy of patients with malignancies. When using NK cells from peripheral blood, the number of expanded NK cells can be highly variable and the need for NK cell enrichment can make the process expensive. The NK-92 cell line (CD56+/CD3-) that was isolated from a patient with lymphoma has predictable high cytotoxic activity and can be expanded under good manufacturing practice conditions in recombinant interleukin-2. Fifteen patients (age, 9-71 years) with advanced, treatment-resistant malignancies, either solid tumors/sarcomas (n = 13) or leukemia/lymphoma (n = 2), received two infusions of NK-92 cells, given 48 h apart. Three cohorts of patients were treated with escalating doses of NK-92 cells (n = 7 at 1 × 10(9), n = 6 at 3 × 10(9) and n = 2 at 1 × 10(10) cells/m(2)). No infusion-related or long-term side effects were observed. The dose of 10(10) cells/m(2) was considered the maximum expandable cell dose with the use of an established culture bag system. Three fourths of patients with lung cancer had some anti-tumor response. Only one patient of seven had development of human leukocyte antigen antibodies. The persistence of NK-92 cells (male origin) in the circulation was confirmed by Y chromosome-specific polymerase chain reaction in two female patients. Infusions of NK-92 cells up to 10(10) cells/m(2) were well tolerated. Despite the allogeneic nature of NK-92, development of human leukocyte antigen antibodies in these patients with cancer appears to be rare. The cells can persist in the recipient's circulation for at least 48 h. Some encouraging responses were seen in patients with advanced lung cancer.
    Cytotherapy 10/2013; · 3.06 Impact Factor
  • Hans G Klingemann
    [Show abstract] [Hide abstract]
    ABSTRACT: Although T-lymphocytes have received most of the attention in immunotherapy trials, new discoveries around natural killer (NK) cells suggest that they also should be suitable effector cells for cellular therapy of cancer. In addition to direct cytotoxicity, NK cells produce an array of immune-active cytokines, among them interferons and granulocyte-macrophage colony-stimulating factor, which places them at the crossroads of innate and adaptive immunity. They also augment monoclonal antibody activity through antibody-mediated cellular cytotoxicity and can be transfected with chimeric antigen receptors. One of the stumbling blocks for NK cell-based therapies has been the inability to predictably obtain and expand larger numbers from donors, but also to achieve sufficiently high transfection efficiency of target genes. The first clinical trials with NK cells suggest some benefit, but more definite evidence is needed to justify this relatively expensive treatment.
    Cytotherapy 06/2013; · 3.06 Impact Factor
  • Transfusion 02/2013; 53(2):411. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: In the setting of allogeneic stem cell transplantation (SCT), infusing natural killer (NK) cells from a major histocompatibility complex (MHC)-mismatched donor can mediate an antileukemic effect. The graft-versus-tumor effect after autologous stem cell transplantation (ASCT) may result in less disease relapse. STUDY DESIGN AND METHODS: We performed a Phase I clinical trial to assess the safety and feasibility of infusing distantly processed donor NK-enriched mononuclear cell (NK-MNC) infusions from a MHC haplotype-mismatched (haploidentical) donor to patients who recently underwent ASCT for a hematologic malignancy. On Day 1, peripheral blood MNCs were obtained by steady-state leukapheresis and sent from Boston to the Production Assistance for Cellular Therapies (PACT) facility at the University of Minnesota, where immunomagnetic depletion of CD3 cells was performed on Day 2. NK-MNC products were then returned to Boston on Day 2 for infusion on Day 3. Toxicity, cellular product characteristics, and logistic events were monitored. RESULTS: At a median of 90 days (range, 49-191 days) after ASCT, 13 patients were treated with escalating doses of NK-MNCs per kilogram from 10(5) to 2 × 10(7) . Adverse effects included Grade 2 rigors and muscle aches, but no Grade 3 or 4 events and no graft-versus-host disease or marrow suppression. One air courier delay occurred. NK-MNC products were viable with cytotoxic activity after transport. CONCLUSION: CD3-depleted, MHC-mismatched allogeneic NK-MNC infusions can be safely and feasibly administered to patients after ASCT after distant processing and transport, justifying further development of this approach.
    Transfusion 06/2012; · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: Natural killer (NK) cells have shown promise in the treatment of malignancy. However, the widespread use of these cells may be limited by both the lack of resources and the expertise needed to manufacture them and the apparent need to use only fresh cells. The NHLBI-sponsored Production Assistance for Cellular Therapies group was established to provide the resources and expertise to carry out cell therapy research, including support of clinical trials. Here we describe the qualification of in transit activation of an NK-cell therapy product in preparation for a Phase I clinical trial at a distant medical center. STUDY DESIGN AND METHODS: Nonmobilized apheresis mononuclear cell collections were CD3+ cell depleted, placed into culture bags with interleukin (IL)-2, and shipped from Minneapolis/Saint Paul, Minnesota, to Columbus, Ohio, and back to Minneapolis/Saint Paul, under warm, monitored temperatures. Products underwent quality control (QC) testing including cell count, immunophenotyping, viability, endotoxin, sterility culture, and cytotoxicity assays. One product tested the relative importance of IL-2 and controlled incubation. RESULTS: The length of shipment ranged from 14 to 16 hours, and temperatures were well controlled. QC testing was acceptable based upon previous in-house experience. Controlled incubation was not necessary for successful activation of NK cells, but IL-2 appeared essential. CONCLUSION: The need for novel cell therapies to be infused as fresh products may be a limitation for various cell types. However, we have shown that NK cells can be successfully shipped in the fresh state (allowing 48 hr from apheresis to product infusion) for use at clinical centers. Although IL-2 is critical for NK-cell activation, a 37°C, 5% CO(2) incubator is not.
    Transfusion 05/2012; · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Natural killer (NK) cells can be engineered to kill resistant B-lymphoid cell lines and primary B-cell chronic lymphocytic leukemia (B-CLL) cells after transfection with chimeric antigen receptors (CARs) recognizing CD19 or CD20. Here we compared mRNA electroporation with lentiviral vector (LV) transduction for both CARs. Transfection efficiency and cytotoxicity of previously NK-92 resistant CLL cells were significantly higher after mRNA electroporation than after LV transduction. Further cell sorting of LV-transduced NK-92 cells resulted in a highly enriched population of transduced cells with significant target cell lysis. Compared to NK-92 cells, peripheral blood and cord blood cells consistently showed < 10% transfection efficiency with mRNA, while LV transduction varied between 8 and 16% for peripheral blood and 12 and 73% for cord blood. These results suggest that LV should be used to achieve sufficient transgene expression if blood NK cells are considered for CAR transduction. Transfection with mRNA results in clinically relevant levels of transfection only in NK-92 cells.
    Leukemia & lymphoma 12/2011; 53(5):958-65. · 2.61 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Among hematologic neoplasms, chronic myeloid leukemia (CML) is exquisitely sensitive to graft-versus-leukemia (GVL) because patients relapsing after allogeneic hematopoietic stem-cell transplantation (alloHSCT) can be cured by donor leukocyte infusion (DLI); however, the cellular mechanisms and strategies to separate GVL from GVHD are unclear. We used a BCR-ABL1 transduction/transplantation mouse model to study the mechanisms of DLI in MHC-matched, minor histocompatibility antigen-mismatched allogeneic chimeras with CML-like leukemia, in which DLI can be administered at the time of transplantation (early) or after recovery of hematopoiesis (delayed). After early DLI, CML-like leukemia cannot be transferred into immunocompetent secondary recipients as soon as 4 days after primary transplantation, demonstrating that cotransplantation of T lymphocytes blocks the engraftment of BCR-ABL1-transduced stem cells. In contrast, in allogeneic chimeras with established CML-like leukemia, combined treatment with delayed DLI and the kinase inhibitor imatinib eradicates leukemia with minimal GVHD. The GVL effect is directed against minor histocompatibility antigens shared by normal and leukemic stem cells, and is mediated predominantly by CD8+ T cells, with minor contributions from CD5- splenocytes, including natural killer cells. These results define a physiologic model of adoptive immunotherapy of CML that will be useful for investigating the cellular and molecular mechanisms of GVL.
    Blood 11/2011; 119(1):273-84. · 9.78 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Monoclonal antibodies (mAbs) are increasingly used in treatment protocols for chronic lymphocytic leukemia (CLL). Here we determined (i) the extent of antibody-dependent cellular cytotoxicity (ADCC) of four different mAbs against primary CLL cells, (ii) whether ADCC correlates with antigen density on CLL cells, and (iii) whether allogeneic natural killer (NK) cells display superior ADCC than autologous. Effector cells for ADCC were (i) NK-92 cells not expressing FcR, (ii) NK-92 cells transfected with a high-affinity Fc receptor, (iii) autologous NK cells from patients with CLL, (iv) allogeneic NK cells. Results suggest that ADCC contributes to killing of CLL cells by anti-CD20 antibodies (rituximab and veltuzumab), whereas mAbs against CD22 (epratuzumab) and CD23 (lumiliximab) showed minimal ADCC. The magnitude of anti-CD20 mediated ADCC did not correlate with antigen density of CD20. ADCC was not influenced by the FcR genotype expressed by autologous NK cells. Allogeneic NK cells were superior to autologous NK cells in killing primary CLL cells.
    Leukemia & lymphoma 07/2009; 50(8):1361-8. · 2.61 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: An emerging treatment option for chronic lymphocytic leukemia (CLL) is to make cytotoxic immune cells express a chimeric antigen receptor (CAR) that recognizes specific surface molecules on CLL cells. Here an mRNA coding for an anti-CD19 CAR was transfected into the NK-92 cell line by electroporation. In contrast to cDNA, mRNA resulted in high transfection efficiency (47.2 +/- 8% versus <5% for cDNA) with minimal effect on cell viability. NK-92 cells expressing anti-CD19 CAR killed previously resistant CD19+ B-ALL cell lines, as well as primary CLL cells and therefore may present a safe, cell-based, targeted treatment for patients with CLL.
    Leukemia research 01/2009; 33(9):1255-9. · 2.36 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Natural killer (NK) cell-mediated cytotoxicity can control leukemia relapse while protecting patients from graft-versus-host disease (GVHD) after allogeneic stem cell transplant. Cord blood (CB) is rich in NK cell progenitors with similar properties of proliferation and cytotoxicity as adult blood NK cells. Hence, it is attractive to expand and potentially utilize these cells for adoptive immunotherapy. In this study, CB mononuclear cells were CD3-depleted by immunomagnetic microbead selection to remove T cells. This CD3(dep) CB-MNC fraction was then plated for ex vivo expansion, with or without a feeder layer of irradiated umbilical cord mesenchymal stem cells (UC-MSC), with or without cytokines that have been shown to be critical for NK expansion: IL-2, IL-15, IL-3, and FLT-3L. At an average of 2 weeks of culture, there was significantly higher expansion (64.7 +/- 8.4-fold) of CD56(+)/CD3(-) NK cells in the presence of the UC-MSC feeder layer and cytokines compared to controls (no increase with feeder layer only and 6.4 +/- 1.5-fold increase with cytokines only, P < .05). Contact between CD3(dep) CB-MNC cells and UC-MSC augmented NK expansion. The combination of all 4 cytokines was superior to IL-2 alone or 2 cytokines combinations: mean 64.7 +/- 8.4-fold expansion with 4 cytokines combination versus IL-2 alone, IL-2 + FLT-3L, IL-2 + IL-15 or IL-2 + IL-3 (12.2 +/- 2.0, 14.4 +/- 2.4, 10.4 +/- 4.1, 25.2 +/- 8.1 respectively). We also observed that only fresh CD3(dep) CB-MNC preparations could be expanded reliably, whereas frozen and thawed CD3(dep) CB-MNC cells did not expand consistently (mean fold increase 6.5 +/- 3.2). Cytotoxicity of expanded NK cells was compared with NK cells from fresh and overnight IL-2 activated CD3(dep) CB-MNC. Whereas fresh cells displayed no discernible killing, strong cytotoxicity against K562, Raji, REH, and SUP-B15 cells lines was noted after overnight activation in IL-2. Cytotoxicity of expanded NK cells against Raji, REH, and SUP-B15 was lower, which, however, correlated with a predominant expansion of CD56(+)/CD16(-) cells known to have less cytolytic activity than CD56(+)/CD16(+). To test the transfection efficiency in NK cells, fresh or expanded CD3(dep) CB-MNC cells were electroporated with either DNA or mRNA constructs for GFP. DNA had a low transfection efficiency (<10%), whereas the one for mRNA reached 52%, but at the cost of significant cell death. Our results suggest that CB NK cell progenitors can be expanded to obtain large numbers by using an irradiated feeder of UC-MSC. They maintain an elevated cytotoxic profile, and may be genetically manipulated-all characteristics that make them suitable for cellular therapies.
    Biology of blood and marrow transplantation: journal of the American Society for Blood and Marrow Transplantation 10/2008; 14(9):1031-8. · 3.15 Impact Factor
  • Source
    Hans Klingemann, David Matzilevich, James Marchand
    [Show abstract] [Hide abstract]
    ABSTRACT: SUMMARY: Although mesenchymal stem cells (MSC) from different tissue sources share many characteristics and generally fulfill accepted criteria for MSC (plastic adherence, certain surface marker expression, and ability to differentiate into mesenchymal tissues), we are increasingly learning that they can be distinguished at the level of cytokine production and gene expression profiles. Their ability to differentiate into different tissues including endodermal and ectodermal lineages, also varies according to tissue origin. Importantly, MSC from fetal sources can undergo more cell divisions before they reach senescence than MSC from adult tissue such as bone marrow or adipose tissue. As we learn more about the differentiation and plasticity of MSC from different sources, health care providers in the future will use them tailored to different medical indications.
    Transfusion Medicine and Hemotherapy 01/2008; 35(4):272-277. · 1.59 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The Wharton's jelly of the umbilical cord is rich in mesenchymal stem cells (UC-MSCs) that fulfill the criteria for MSCs. Here we describe a novel, simple method of obtaining and cryopreserving UC-MSCs by extracting the Wharton's jelly from a small piece of cord, followed by mincing the tissue and cryopreserving it in autologous cord plasma to prevent exposure to allogeneic or animal serum. This direct freezing of cord microparticles without previous culture expansion allows the processing and freezing of umbilical cord blood (UCB) and UC-MSCs from the same individual on the same day on arrival in the laboratory. UC-MSCs produce significant concentrations of hematopoietic growth factors in culture and augment hematopoietic colony formation when co-cultured with UCB mononuclear cells. Mice undergoing transplantation with limited numbers of human UCB cells or CD34(+) selected cells demonstrated augmented engraftment when UC-MSCs were co-transplanted. We also explored whether UC-MSCs could be further manipulated by transfection with plasmid-based vectors. Electroporation was used to introduce cDNA and mRNA constructs for GFP into the UC-MSCs. Transfection efficiency was 31% for cDNA and 90% for mRNA. These data show that UC-MSCs represent a reliable, easily accessible, noncontroversial source of MSCs. They can be prepared and cryopreserved under good manufacturing practices (GMP) conditions and are able to enhance human hematopoietic engraftment in SCID mice. Considering their cytokine production and their ability to be easily transfected with plasmid-based vectors, these cells should have broad applicability in human cell-based therapies.
    Biology of Blood and Marrow Transplantation 01/2008; 13(12):1477-86. · 3.94 Impact Factor
  • Biology of Blood and Marrow Transplantation - BIOL BLOOD MARROW TRANSPLANT. 01/2007; 13(11):1403-1403.
  • Hans Klingemann
    [Show abstract] [Hide abstract]
    ABSTRACT: Although embryonic stem cells hold the promise for tissue and organ generation, stem cells with early mesenchymal character, which can be obtained at the time of birth from extra-embryonic tissue, may have similar capabilities if manipulated appropriately. These 'perinatal' tissues, such as the umbilical cord or the placenta, which are generally discarded after delivery, contain early mesenchymal stem cells that are believed to have a greater potential for plasticity than postnatal mesenchymal cells, such as those from bone marrow. They express early transcriptional genes, and emerging technologies, such as nuclear reprogramming, could direct their development into tissues of embryonic origin. Hence, these cells, generally discarded after birth, could become a valuable source for future tissue generation.
    Expert opinion on biological therapy 01/2007; 6(12):1251-4. · 3.22 Impact Factor

Publication Stats

171 Citations
45.93 Total Impact Points


  • 2013
    • University of Massachusetts Boston
      Boston, Massachusetts, United States
  • 2007–2013
    • Tufts University
      • Molecular Oncology Research Institute (MORI)
      Georgia, United States
  • 2007–2011
    • Tufts Medical Center
      • • Department of Obstetrics and Gynecology
      • • Division of adult Hematology/Oncology
      • • Molecular Oncology Research Institute
      Boston, Massachusetts, United States
  • 2008
    • Boston Biomedical Research Institute
      Boston, Massachusetts, United States