Yu Li

Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States

Are you Yu Li?

Claim your profile

Publications (6)13.78 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: This study aims to (i) develop a new high-speed MRI approach by implementing correlation imaging in wavelet-space, and (ii) demonstrate the ability of wavelet-space correlation imaging to image human anatomy with involuntary or physiological motion. Correlation imaging is a high-speed MRI framework in which image reconstruction relies on quantification of data correlation. The presented work integrates correlation imaging with a wavelet transform technique developed originally in the field of signal and image processing. This provides a new high-speed MRI approach to motion-free data collection without motion monitoring or data segmentation. The new approach, called "wavelet-space correlation imaging", is investigated in brain imaging with involuntary motion and chest imaging with free-breathing. Wavelet-space correlation imaging can exceed the speed limit of conventional parallel imaging methods. Using this approach with high acceleration factors (6 for brain MRI, 16 for cardiac MRI, and 8 for lung MRI), motion-free images can be generated in static brain MRI with involuntary motion and nonsegmented dynamic cardiac/lung MRI with free-breathing. Wavelet-space correlation imaging enables high-speed MRI in the presence of involuntary motion or physiological dynamics without motion monitoring or data segmentation. Magn Reson Med, 2014. © 2014 Wiley Periodicals, Inc. © 2014 Wiley Periodicals, Inc.
    Magnetic Resonance in Medicine 12/2014; · 3.27 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To eliminate the medical risks and logistical challenges of transporting infants from the neonatal intensive care unit (NICU) to the radiology department for magnetic resonance imaging, a small-footprint 1.5-T MRI scanner has been developed for neonatal imaging within the NICU. MRI is known to be noisy, and exposure to excessive acoustic noise has the potential to elicit physiological distress and impact development in the term and preterm infant. To measure and compare the acoustic noise properties of the NICU MRI system against those of a conventional 1.5-T MRI system. We performed sound pressure level measurements in the NICU MRI scanner and in a conventional adult-size whole-body 1.5-T MRI system. Sound pressure level measurements were made for six standard clinical MR imaging protocols. The average sound pressure level value, reported in unweighted (dB) and A-weighted (dBA) decibels for all six imaging pulse sequences, was 73.8 dB and 88 dBA for the NICU scanner, and 87 dB and 98.4 dBA for the conventional MRI scanner. The sound pressure level values measured on the NICU scanner for each of the six MR imaging pulse sequences were consistently and significantly (P = 0.03) lower, with an average difference of 14.2 dB (range 10-21 dB) and 11 dBA (range 5-18 dBA). The sound pressure level frequency response of the two MR systems showed a similar harmonic structure above 200 Hz for all imaging sequences. The amplitude, however, was appreciably lower for the NICU scanner, by as much as 30 dB, for frequencies below 200 Hz. The NICU MRI system is quieter than conventional MRI scanners, improving safety for the neonate and facilitating siting of the unit within the NICU.
    Pediatric Radiology 03/2014; · 1.57 Impact Factor
  • Yu Li
    [Show abstract] [Hide abstract]
    ABSTRACT: The presented work aims to develop a generalized linear approach to image reconstruction with arbitrary sampling trajectories for high-speed MRI. This approach is based on a previously developed image reconstruction framework, "correlation imaging" (1). In the presented work, correlation imaging with arbitrary sampling trajectories is implemented in a multi-dimensional hybrid space that is formed from the physical sampling space and a virtually defined space. By introducing an undersampling trajectory with both uniformity and randomness in the hybrid space, correlation imaging may take advantage of multiple image reconstruction mechanisms including coil sensitivity encoding, data sparsity and information sharing. This hybrid-space implementation is demonstrated in multi-slice 2D imaging, multi-scan imaging, and radial dynamic imaging. Since more information is used in image reconstruction, it is found that hybrid-space correlation imaging outperforms several conventional techniques. The presented approach will benefit clinical MRI by enabling correlation imaging to be used to accelerate multi-scan clinical protocols that need different sampling trajectories in different scans.
    Magnetic Resonance Imaging 01/2014; · 2.06 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Echo Planar Imaging (EPI) is a neuroimaging tool for clinical practice and research investigation. Due to odd-even echo phase inconsistencies, however, EPI suffers from Nyquist N/2 ghost artifacts. In standard neuroimaging protocols, EPI artifacts are suppressed using phase correction techniques that require reference data collected from a reference scan. Because reference-scan based techniques are sensitive to subject motion, EPI performance is sub-optimal in neuroimaging applications. In this technical note, we present a novel EPI data processing technique which we call Parallel EPI Artifact Correction (PEAC). By introducing an implicit data constraint associated with multi-coil sensitivity in parallel imaging, PEAC converts phase correction into a constrained problem that can be resolved using an iterative algorithm. This enables "reference-less" EPI that can improve neuroimaging performance. In the presented work, PEAC is investigated using a standard functional magnetic resonance imaging (fMRI) protocol with multi-slice 2D EPI. It is demonstrated that PEAC can suppress ghost artifacts as effectively as the standard reference-scan based phase correction technique used on a clinical MRI system. We also found that PEAC can achieve dynamic phase correction when motion occurs.
    Magnetic Resonance Imaging 04/2013; · 2.06 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Transporting premature infants from a neonatal intensive care unit (NICU) to a radiology department for MRI has medical risks and logistical challenges. To develop a small 1.5-T MRI system for neonatal imaging that can be easily installed in the NICU and to evaluate its performance using a sheep model of human prematurity. A 1.5-T MRI system designed for orthopedic use was adapted for neonatal imaging. The system was used for MRI examinations of the brain, chest and abdomen in 12 premature lambs during the first hours of life. Spin-echo, fast spin-echo and gradient-echo MR images were evaluated by two pediatric radiologists. All animals remained physiologically stable throughout the imaging sessions. Animals were imaged at two or three time points. Seven brain MRI examinations were performed in seven different animals, 23 chest examinations in 12 animals and 19 abdominal examinations in 11 animals. At each anatomical location, high-quality images demonstrating good spatial resolution, signal-to-noise ratio and tissue contrast were routinely obtained within 30 min using standard clinical protocols. Our preliminary experience demonstrates the feasibility and potential of the neonatal MRI system to provide state-of-the-art MRI capabilities within the NICU. Advantages include overall reduced cost and site demands, lower acoustic noise, improved ease of access and reduced medical risk to the neonate.
    Pediatric Radiology 06/2012; 42(11):1347-56. · 1.57 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A new approach to high-speed magnetic resonance imaging (MRI) that uses all the data acquired in a multiscan imaging session is presented. This approach accelerates MRI data acquisition by statistically estimating correlation functions from images with different contrast and/or resolution. In multiscan MRI with parallel data acquisition, the estimation of correlation functions is dynamically improved as imaging proceeds. This allows imaging acceleration factors to be increased in subsequent scans, thereby reducing the total time of a multiscan MRI protocol. Furthermore, the correlation function estimates bring information about both coil sensitivity and anatomical structure into image reconstruction, thereby offering the ability to speed up MRI beyond the parallel imaging acceleration limit posed by a coil array alone. In this study, the feasibility of correlation imaging is demonstrated experimentally using brain and spine imaging protocols. The ability of correlation imaging to achieve an aggregate acceleration factor in excess of the number of coil elements in the phase encoding direction is also demonstrated. Magn Reson Med, 2012. © 2012 Wiley Periodicals, Inc.
    Magnetic Resonance in Medicine 02/2012; · 3.27 Impact Factor

Publication Stats

7 Citations
13.78 Total Impact Points

Institutions

  • 2012–2014
    • Cincinnati Children's Hospital Medical Center
      • Perinatal Institute
      Cincinnati, Ohio, United States
  • 2013
    • University of Cincinnati
      • Department of Mathematical Sciences
      Cincinnati, OH, United States