Are you Huili Shen?

Claim your profile

Publications (2)4.61 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: AMP-activated protein kinase (AMPK) plays a key role in maintaining intracellular and whole-body energy homeostasis. Activation of AMPK has been shown to ameliorate the symptoms of metabolic diseases, such as type 2 diabetes and obesity. Here we show that gambogic acid (GB), a known antitumor agent, activates AMPK by increasing the phosphorylation of AMPKα and its downstream substrate ACC in various cell lines. Further study revealed that GB stimulated AMPK activity independent of upstream kinases. Moreover, the AMPK inhibitor, compound C, has no effects on the GB-induced AMPK activation. We also found that GB promptly increased intracellular ROS level, and antioxidants attenuated the ROS production. Interestingly, only the thiol antioxidants significantly abolished GB-enhanced AMPK activation. In addition, analysis of binding and dissociation kinetics indicated that GB bound to the AMPKα subunit. Collectively, these results suggest that GB may be a novel direct activator of AMPK.
    Biochemical and Biophysical Research Communications 06/2012; 424(1):100-4. · 2.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Metformin acts as an energy regulator by activating 5'-adenosine monophosphate-activated protein kinase (AMPK), which is a key player in the regulation of energy homeostasis, but it is uncertain whether AMPK is its direct target. This study aims to investigate the possible interaction between metformin and AMPK. First, we verified that metformin can promote AMPK activation and induce ACC inactivation in human HepG2 cells using western blot. Then we predicted that metformin may interact with the γ subunit of AMPK by molecular docking analysis. The fluorescence spectrum and ForteBio assays indicated that metformin has a stronger binding ability to the γ subunit of AMPK than to α subunit. In addition, interaction of metformin with γ-AMPK resulted in a decrease in the α-helicity determined by CD spectra, but relatively little change was seen with α-AMPK. These results demonstrate that metformin may interact with AMPK through binding to the γ subunit.
    Molecular and Cellular Biochemistry 05/2012; 368(1-2):69-76. · 2.33 Impact Factor