Are you Mariya E Shekht?

Claim your profile

Publications (3)3.84 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: The full structure of the lipopolysaccharide core of bacteria Shigella flexneri types 2a and 5b, the causative agents of bacillary dysentery (shigellosis), was established by chemical methods, high-resolution electrospray ionization mass spectrometry, and two-dimensional NMR spectroscopy. The structure of the O-antigen repeating unit and the configuration and position of the linkage between the O-antigen and the core were determined in the lipopolysaccharide of S. flexneri type 2a.
    Bioorganicheskaia khimiia 05/2010; 36(3):429-32. DOI:10.1134/S1068162010030179
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The O-specific polysaccharide (O-antigen) structure of a Shigella flexneri type 4a strain from the Dysentery Reference Laboratory (London, UK) was elucidated in 1978 and its characteristic feature was found to be alpha-D-glucosylation of GlcNAc at position 6, which defines O-factor IV. Our NMR spectroscopic studies of the O-specific polysaccharides of two other strains belonging to S. flexneri type 4a (G1668 from Adelaide, Australia, and 1359 from Moscow, Russia) confirmed the carbohydrate backbone structure but revealed in both strains an additional component, ethanolamine phosphate (EtnP), attached at position 3 of one of the rhamnose residues: [structure: see text]. Phosphorylation has not been hitherto reported in any S. flexneri O-antigen. Reinvestigation of the O-specific polysaccharide of S. flexneri type 4b showed that it is not phosphorylated and confirmed its structure established earlier.
    Carbohydrate research 04/2009; 344(12):1588-91. DOI:10.1016/j.carres.2009.03.022 · 1.93 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Shigella flexneri type 2a is the first, and type 1b is the second, most prevalent isolates from patients with shigellosis in Russia. The O-specific polysaccharides (OPSs, O-antigens) of S. flexneri types 1-5 possess a common -->2)-alpha-l-RhapIII-(1-->2)-alpha-l-RhapII-(1-->3)-alpha-l-RhapI-(1-->3)-beta-d-GlcpNAc-(1--> backbone and differ from each other in its glucosylation or/and O-acetylation at various positions, the modifications being responsible for various O-factors. It was suggested that O-factor 6 expressed by type 1b is associated with O-acetylation of RhaI at position 2 but more than one O-acetyl group has been detected in the type 1b OPS [Kenne, L. et al. Eur. J. Biochem.1978, 91, 279-284]. In this work, O-acetylation of RhapI in the type 1b OPS was confirmed by NMR spectroscopy and location of an additional O-acetyl group at position either 3 (major) or 4 (minor) of RhapIII was determined. Type 1a differs from type 1b in the lack of O-acetylation of RhapI only. In type 2a, in addition to two reported major O-acetyl groups at position 6 of GlcNAc and position 3 of RhapIII [Kubler-Kielb, J. et al. Carbohydr. Res.2007, 342, 643-647], a minor O-acetyl group was found at position 4 of RhaIII. Therefore, RhapIII is O-acetylated in the same manner in all three S. flexneri serotypes studied.
    Carbohydrate research 03/2009; 344(5):687-92. DOI:10.1016/j.carres.2009.01.004 · 1.93 Impact Factor