Are you C Cruz?

Claim your profile

Publications (5)2.98 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The variability of the volatile profile of 70 propolis samples from acaricide-treated and -untreated beehives maintained at Algarve (Portugal) was evaluated. Propolis samples were collected in three regions of Algarve at three different periods. Cluster analysis based on the propolis volatiles' chemical composition defined two main clusters, not related to the time of year, collection site, altitude, temperature or humidity ranges, and was based mainly on the relative amounts of viridiflorol, n-tricosane and n-nonadecane for cluster I. Cluster II was mainly characterised by the high thymol content, followed by viridiflorol, n-tricosane and n-nonadecane. The presence of higher thymol levels in propolis samples from cluster II may reflect the long use of an acaricide with thymol as main active ingredient. All samples showed an intense rock-rose aroma supported by the presence of characteristic Cistus and labdanum oil volatile components. Given the nowadays frequent propolis household use, volatiles thorough characterisation may assist in its quality assessment.
    Natural product research 06/2012; · 1.01 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Salvia officinalis L. oils were isolated from the plant's commercial dried aerial parts, by hydrodistillation, with different distillation times. The essential oils were analysed by gas chromatography and gas chromatography-mass spectrometry. The antioxidant ability was measured using a free radical scavenging activity assay using 2,2-diphenyl-1-picrylhydrazyl (DPPH), a thiobarbituric acid reactive substances (TBARS) assay, a deoxyribose assay for the scavenging of hydroxyl radical, an assay for site-specific actions and a 5-lipoxygenase assay. Antibacterial activity was determined by the agar diffusion method. 1,8-Cineole, α-pinene and camphor were the dominant components of all the essential oils. The different hydrodistillation times did not affect the oil yield nor the relative amount of the oil components. The time of hydrodistillation influenced the antioxidant activity. With the DPPH method, the oils isolated for 2 and 3 h were stronger free radical scavengers, while with the TBARS method, the highest antioxidant values were obtained in the oils isolated for 30 min, 2 and 3 h. Hydroxyl radical scavenging and lipoxygenase activity assays showed the best results with oils isolated for 1 and 3 h. With the deoxyribose method, sage oils at concentrations <1000 mg L(-1) showed better activity than mannitol. The essential oil of S. officinalis showed very weak antimicrobial activity.
    Natural product research 03/2011; 25(5):526-41. · 1.01 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The essential oils from Foeniculum vulgare commercial aerial parts and fruits were isolated by hydrodistillation, with different distillation times (30 min, 1 h, 2 h and 3 h), and analyzed by GC and GC-MS. The antioxidant ability was estimated using four distinct methods. Antibacterial activity was determined by the agar diffusion method. Remarkable differences, and worrying from the quality and safety point of view, were detected in the essential oils. trans-Anethole (31-36%), alpha-pinene (14-20%) and limonene (11-13%) were the main components of the essentials oil isolated from F. vulgare dried aerial parts, whereas methyl chavicol (= estragole) (79-88%) was dominant in the fruit oils. With the DPPH method the plant oils showed better antioxidant activity than the fruits oils. With the TBARS method and at higher concentrations, fennel essential oils showed a pro-oxidant activity. None of the oils showed a hydroxyl radical scavenging capacity > 50%, but they showed an ability to inhibit 5-lipoxygenase. The essential oils showed a very low antimicrobial activity. In general, the essential oils isolated during 2 h were as effective, from the biological activity point of view, as those isolated during 3 h.
    Natural product communications 02/2010; 5(2):319-28. · 0.96 Impact Factor
  • Planta Medica - PLANTA MED. 01/2007; 73(09).
  • Planta Medica - PLANTA MED. 01/2007; 73(09).