Cheng-Han Chung

National Taiwan University, T’ai-pei, Taipei, Taiwan

Are you Cheng-Han Chung?

Claim your profile

Publications (5)20.65 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: The fruiting body of Antrodia cinnamomea is used as a medicinal mushroom in Taiwan and is found on the inner cavity of the endemic species Cinnamomum kanehirai. In this study, phytomics similarity index (PSI) analysis was employed for the chemical quality evaluation of the A. cinnamomea fruiting bodies from different strains, and grown on various substrates. The results indicated that the different types of A. cinnamomea fruiting bodies contain eight index compounds, and that it was difficult to discriminate between them solely on the basis of those index compounds. In our research, we used PSI scores to assess the metabolite similarity of the fruiting bodies of A. cinnamomea. It was revealed that fruiting bodies from various A. cinnamomea strains grown on different culture substrates produce distinct PSI scores. We concluded that PSI analysis had good selectivity on the different types of A. cinnamomea fruiting bodies.
    Journal of Food and Drug Analysis 04/2015; DOI:10.1016/j.jfda.2015.01.008 · 0.40 Impact Factor
  • Source
    Cheng-Han Chung · Szu-Chien Yeh · Chun-Jen Chen · Kung-Ta Lee
    [Show abstract] [Hide abstract]
    ABSTRACT: We investigated the anticancer effects of Antrodia cinnamomea, a medicinal mushroom from Taiwan, on A549 human lung cancer cells using the ethyl acetate extract from submerged culture filtrates. Our results showed that 2,3-dimethoxy-5-methyl-1,4-benzoquinone (coenzyme Q0; CoQ0) derived from A. cinnamomea submerged culture filtrates has anticancer activity. CoQ0 treatment reduced the viability of A549, HepG2, and SW480 cancer cell lines. Furthermore, CoQ0 induced reactive oxygen species (ROS) generation and apoptosis in A549 cells, which was inhibited by the antioxidant ascorbic acid. To our knowledge, these data demonstrate for the first time that CoQ0 derived from A. cinnamomea submerged culture filtrates exerts its anticancer effect through the induction of ROS-mediated apoptosis in A549 human lung cancer cells.
    Evidence-based Complementary and Alternative Medicine 11/2014; 2014:246748. DOI:10.1155/2014/246748 · 1.88 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: B-cell activation is important for mounting humoral immune responses and antibody production. Galectin-1 has multiple regulatory functions in immune cells. However, the effects of galectin-1 modulation and the mechanisms underlying the coordination of B-cell activation are unclear. To address this issue, we applied label-free quantitative phosphoproteomic analysis to investigate the dynamics of galectin-1-induced signaling in comparison with that following anti-IgM treatment. A total of 3247 phosphorylation sites on 1245 proteins were quantified, and 70-80% of the 856 responsive phosphoproteins were commonly activated during various biological functions. The similarity between galectin-1- and anti-IgM-elicited B-cell receptor (BCR) signaling pathways was also revealed. Additionally, the mapping of the 149 BCR-responsive phosphorylation sites provided complementary knowledge of BCR signaling. Compared to anti-IgM induction, the phosphoproteomic profiling of BCR signaling, along with validation by western blot analysis and pharmacological inhibitors, revealed that the activation of Syk, Btk, and PI3K may be dominant in galectin-1-mediated activation. We further demonstrated that the proliferation of antigen-primed B cells was diminished in the absence of galectin-1 in an animal model. Together, these findings provided evidence for a new role and insight into the mechanism of how galectin-1 augments the strength of the immunological synapse by modulating BCR signaling.
    Journal of proteomics 04/2014; 103. DOI:10.1016/j.jprot.2014.03.031 · 3.93 Impact Factor
  • Source
    Chia-Hung Hsieh · Chiun-Cheng Ko · Cheng-Han Chung · Hurng-Yi Wang
    [Show abstract] [Hide abstract]
    ABSTRACT: The sweet potato whitefly, Bemisia tabaci, is a highly differentiated species complex. Despite consisting of several morphologically indistinguishable entities and frequent invasions on all continents with important associated economic losses, the phylogenetic relationships, species status, and evolutionary history of this species complex is still debated. We sequenced and analyzed one mitochondrial and three single-copy nuclear genes from 9 of the 12 genetic groups of B. tabaci and 5 closely related species. Bayesian species delimitation was applied to investigate the speciation events of B. tabaci. The species statuses of the different genetic groups were strongly supported under different prior settings and phylogenetic scenarios. Divergence histories were estimated by a multispecies coalescence approach implemented in ∗BEAST. Based on mitochondrial locus, B. tabaci was originated 6.47 million years ago (MYA). Nevertheless, the time was 1.25 MYA based on nuclear loci. According to the method of approximate Bayesian computation, this difference is probably due to different degrees of migration among loci; i.e., although the mitochondrial locus had differentiated, gene flow at nuclear loci was still possible, a scenario similar to parapatric mode of speciation. This is the first study in whiteflies using multilocus data and incorporating Bayesian coalescence approaches, both of which provide a more biologically realistic framework for delimiting species status and delineating the divergence history of B. tabaci. Our study illustrates that gene flow during species divergence should not be overlooked and has a great impact on divergence time estimation.
    Molecular Phylogenetics and Evolution 03/2014; 76. DOI:10.1016/j.ympev.2014.03.021 · 4.02 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Although the overproduction of immunoglobulins by short-lived plasma cells accompanying an immune response links with their apoptosis, how long-lived plasma cells adapt to ensure their longevity in this context is obscure. Here, we show that apoptosis signal-regulating kinase 1 (ASK1) contributes to apoptosis of plasma cells because ASK1 activity was induced during differentiation of short-lived plasma cells, and, when produced by ASK1-deficient mice, these cells survived better than those of control mice. Moreover, antigen-specific long-lived plasma cells generated by immunization accumulated in ASK1-deficient mice, suggesting ASK1 also plays a negative role in survival of long-lived plasma cells. In malignant plasma cells, ASK1 transcription was directly suppressed by B lymphocyte-induced maturation protein-1 (Blimp-1). The expression of ASK1 and Blimp-1 showed an inverse correlation between normal human mature B cells and bone marrow plasma cells from patients with multiple myeloma (MM). Suppression of ASK1 is crucial for cell survival because its enforced expression in MM cells caused apoptosis in vitro and lowered MM load in a xenograft animal model; furthermore, alteration of ASK1 activity affected MM cell survival. Our findings indicate a novel mechanism underlying the regulation of survival in normal and malignant plasma cells by ASK1.
    Blood 06/2012; 120(5):1039-47. DOI:10.1182/blood-2011-12-399808 · 10.43 Impact Factor

Publication Stats

6 Citations
20.65 Total Impact Points

Institutions

  • 2014–2015
    • National Taiwan University
      • • Department of Biochemical Science & Technology
      • • Graduate Institute of Clinical Medicine
      T’ai-pei, Taipei, Taiwan
  • 2012–2014
    • Academia Sinica
      • Genomics Research Center
      T’ai-pei, Taipei, Taiwan