Cheng-Han Chung

Academia Sinica, T’ai-pei, Taipei, Taiwan

Are you Cheng-Han Chung?

Claim your profile

Publications (2)13.7 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: B-cell activation is important for mounting humoral immune responses and antibody production. Galectin-1 has multiple regulatory functions in immune cells. However, the effects of galectin-1 modulation and the mechanisms underlying the coordination of B-cell activation are unclear. To address this issue, we applied label-free quantitative phosphoproteomic analysis to investigate the dynamics of galectin-1-induced signaling in comparison with that following anti-IgM treatment. A total of 3247 phosphorylation sites on 1245 proteins were quantified, and 70-80% of the 856 responsive phosphoproteins were commonly activated during various biological functions. The similarity between galectin-1- and anti-IgM-elicited B-cell receptor (BCR) signaling pathways was also revealed. Additionally, the mapping of the 149 BCR-responsive phosphorylation sites provided complementary knowledge of BCR signaling. Compared to anti-IgM induction, the phosphoproteomic profiling of BCR signaling, along with validation by western blot analysis and pharmacological inhibitors, revealed that the activation of Syk, Btk, and PI3K may be dominant in galectin-1-mediated activation. We further demonstrated that the proliferation of antigen-primed B cells was diminished in the absence of galectin-1 in an animal model. Together, these findings provided evidence for a new role and insight into the mechanism of how galectin-1 augments the strength of the immunological synapse by modulating BCR signaling.
    Journal of proteomics 04/2014; 103. DOI:10.1016/j.jprot.2014.03.031 · 3.93 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Although the overproduction of immunoglobulins by short-lived plasma cells accompanying an immune response links with their apoptosis, how long-lived plasma cells adapt to ensure their longevity in this context is obscure. Here, we show that apoptosis signal-regulating kinase 1 (ASK1) contributes to apoptosis of plasma cells because ASK1 activity was induced during differentiation of short-lived plasma cells, and, when produced by ASK1-deficient mice, these cells survived better than those of control mice. Moreover, antigen-specific long-lived plasma cells generated by immunization accumulated in ASK1-deficient mice, suggesting ASK1 also plays a negative role in survival of long-lived plasma cells. In malignant plasma cells, ASK1 transcription was directly suppressed by B lymphocyte-induced maturation protein-1 (Blimp-1). The expression of ASK1 and Blimp-1 showed an inverse correlation between normal human mature B cells and bone marrow plasma cells from patients with multiple myeloma (MM). Suppression of ASK1 is crucial for cell survival because its enforced expression in MM cells caused apoptosis in vitro and lowered MM load in a xenograft animal model; furthermore, alteration of ASK1 activity affected MM cell survival. Our findings indicate a novel mechanism underlying the regulation of survival in normal and malignant plasma cells by ASK1.
    Blood 06/2012; 120(5):1039-47. DOI:10.1182/blood-2011-12-399808 · 9.78 Impact Factor