Ryan Konik

Kent State University, Kent, OH, United States

Are you Ryan Konik?

Claim your profile

Publications (2)3.67 Total impact

  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: G-quadruplex has demonstrated its biological functions in vivo. Although G-quadruplex in single-stranded DNA (ssDNA) has been well characterized, investigation of this species in double-stranded DNA (dsDNA) lags behind. Here we use chemical footprinting and laser-tweezers-based single-molecule approaches to demonstrate that a dsDNA fragment found in the insulin-linked polymorphic region (ILPR), 5'-(ACA GGGG TGT GGGG)2 TGT, can fold into a G-quadruplex at pH 7.4 with 100 mM K+, and an i-motif at pH 5.5 with 100 mM Li+. Surprisingly, under a condition that favors the formation of both G-quadruplex and i-motif (pH 5.5, 100 mM K+), a unique determination of change in the free energy of unfolding (ΔGunfold) by laser-tweezers experiments provides compelling evidence that only one species is present in each dsDNA. Under this condition, molecules containing G-quadruplex are more stable than those with i-motif. These two species have mechanical stabilities (rupture force≥17 pN) comparable to the stall force of RNA polymerases, which, from a mechanical perspective alone, could justify a regulatory mechanism for tetraplex structures in the expression of human insulin.
    Biophysical Journal 06/2012; 102(11):2575-84. · 3.67 Impact Factor

Publication Stats

9 Citations
3.67 Total Impact Points

Top Journals

Institutions

  • 2013
    • Kent State University
      • Department of Chemistry and Biochemistry
      Kent, OH, United States