Zhengxiang Liu

Urumqi General Hospital of Lanzhou Military Region, Ha-mi-ch’eng-chen, Xinjiang Uygur Zizhiqu, China

Are you Zhengxiang Liu?

Claim your profile

Publications (3)7.87 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Inflammatory responses are important to host immune reactions, but uncontrolled inflammatory mediators may aid in the pathogenesis of other inflammatory diseases. Geniposide, an iridoid glycoside found in the herb gardenia, is believed to have broad-spectrum anti-inflammatory effects in murine models but its mechanism of action is unclear. We investigated the action of this compound in murine macrophages stimulated by lipopolysaccharide (LPS), as the stimulation of macrophages by LPS is known to induce inflammatory reactions. We determined the effect of geniposide on LPS-induced production of the inflammatory mediators, nitric oxide (NO) and prostaglandin E2 (PGE2), the mRNA and protein expression of the NO and PGE2 synthases, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), respectively, and the mRNA and protein expression of the inflammatory cytokine, tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). Furthermore, nuclear factor (NF)-κB, mitogen-activated protein kinase (MAPK) and activator protein (AP)-1 activity were assayed. To understand the action of geniposide on the NF-κB and MAPK pathways, we studied the effect of NF-κB and MAPK inhibitors on the LPS-induced production of NO, PGE2 and TNF-α. Our findings clearly showed that geniposide mainly exerts its anti-inflammatory effects by inhibiting the LPS-induced NF-κB, MAPK and AP-1 signaling pathways in macrophages, which subsequently reduces overexpression of the inducible enzymes iNOS and COX-2 and suppresses the expression and release of the inflammatory factors, TNF-α, IL-6, NO and PGE2. Thus, geniposide shows promise as a therapeutic agent in inflammatory diseases.
    International immunopharmacology 04/2014; · 2.21 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Staphylococcus aureus belongs to one of the most common bacteria causing healthcare and community associated infections in China, but their molecular characterization has not been well studied. From May 2011 to June 2012, a total of 322 non-duplicate S. aureus isolates were consecutively collected from seven tertiary care hospitals in seven cities with distinct geographical locations in China, including 171 methicillin sensitive S. aureus (MSSA) and 151 MRSA isolates. All isolates were characterized by spa typing. The presence of virulence genes was tested by PCR. MRSA were further characterized by SCCmec typing. Seventy four and 16 spa types were identified among 168 MSSA and 150 MRSA, respectively. One spa type t030 accounted for 80.1% of all MRSA isolates, which was higher than previously reported, while spa-t037 accounted for only 4.0% of all MRSA isolates. The first six spa types (t309, t189, t034, t377, t078 and t091) accounted for about one third of all MSSA isolates. 121 of 151 MRSA isolates (80.1%) were identified as SCCmec type III. pvl gene was found in 32 MSSA (18.7%) and 5 MRSA (3.3%) isolates, with ST22-MSSA-t309 as the most commonly identified strain. Compared with non-epidemic MRSA clones, epidemic MRSA clones (corresponding to ST239) exhibited a lower susceptibility to rifampin, ciprofloxacin, gentamicin and trimethoprim-sulfamethoxazole, a higher prevalence of sea gene and a lower prevalence of seb, sec, seg, sei and tst genes. The increasing prevalence of multidrug resistant spa-t030 MRSA represents a major public health problem in China.
    PLoS ONE 01/2014; 9(4):e96255. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Acute exposure to high altitudes can cause neurological dysfunction due to decreased oxygen availability to the brain. In this study, the protective effects of Huperzine A on cognitive deficits along with oxidative and apoptotic damage, due to acute hypobaric hypoxia, were investigated in male Sprague-Dawley rats. Rats were exposed to simulated hypobaric hypoxia at 6,000 m in a specially fabricated animal decompression chamber while receiving daily Huperzine A orally at the dose of 0.05 or 0.1 mg/kg body weight. After exposure to hypobaric hypoxia for 5 days, rats were trained in a Morris Water Maze for 5 consecutive days. Subsequent trials revealed Huperzine A supplementation at a dose of 0.1 mg/kg body weight restored spatial memory significantly, as evident from decreased escape latency and path length to reach the hidden platform, and the increase in number of times of crossing the former platform location and time spent in the former platform quadrant. In addition, after exposure to hypobaric hypoxia, animals were sacrificed and biomarkers of oxidative damage, such as reactive oxygen species, lipid peroxidation, lactate dehydrogenase activity, reduced glutathione, oxidized glutathione and superoxide dismutase were studied in the hippocampus. Expression levels of pro-apoptotic proteins (Bax, caspase-3) and anti-apoptotic protein (Bcl-2) of hippocampal tissues were evaluated by Western blotting. There was a significant increase in oxidative stress along with increased expression of apoptotic proteins in hypoxia exposed rats, which was significantly improved by oral Huperzine A at 0.1 mg/kg body weight. These results suggest that supplementation with Huperzine A improves cognitive deficits, reduces oxidative stress and inhibits the apoptotic cascade induced by acute hypobaric hypoxia.
    Neurochemical Research 06/2012; 37(9):2042-52. · 2.13 Impact Factor

Publication Stats

7 Citations
7.87 Total Impact Points


  • 2014
    • Urumqi General Hospital of Lanzhou Military Region
      Ha-mi-ch’eng-chen, Xinjiang Uygur Zizhiqu, China