B. Nisini

The Astronomical Observatory of Brera, Merate, Lombardy, Italy

Are you B. Nisini?

Claim your profile

Publications (264)654.5 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Context: High-resolution studies of class 0 protostars represent the key to constraining protostar formation models. VLA16234-2417 represents the prototype of class 0 protostars, and it has been recently identified as a triple non-coeval system. Aim: We aim at deriving the physical properties of the jets in VLA16234-2417 using tracers of shocked gas. Methods: ALMA Cycle 0 Early Science observations of CO(2-1) in the extended configuration are presented in comparison with previous SMA CO(3-2) and Herschel-PACS [OI}] 63 micron observations. Gas morphology and kinematics were analysed to constrain the physical structure and origin of the protostellar outflows. Results: We reveal a collimated jet component associated with the [OI] 63 micron emission at about 8'' (about 960 AU) from source B. This newly detected jet component is inversely oriented with respect to the large-scale outflow driven by source A, and it is aligned with compact and fast jet emission very close to source B (about 0.3'') rather than with the direction perpendicular to the A disk. We also detect a cavity-like structure at low projected velocities, which surrounds the [OI] 63 micron emission and is possibly associated with the outflow driven by source A. Finally, no compact outflow emission is associated with source W. Conclusions: Our high-resolution ALMA observations seem to suggest there is a fast and collimated jet component associated with source B. This scenario would confirm that source B is younger than A, that it is in a very early stage of evolution, and that it drives a faster, more collimated, and more compact jet with respect to the large-scale slower outflow driven by A. However, a different scenario of a precessing jet driven by A cannot be firmly excluded from the present observations.
    Astronomy and Astrophysics 08/2015; DOI:10.1051/0004-6361/201526428 · 4.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This booklet contains a collection of contributions to the meeting of the JEts and Disks at INAF (JEDI) group, which took place at the Capodimonte Observatory during 9-10 April 2015. Scope of the meeting was to bring together the JEDI researchers of the Italian Istituto Nazionale di Astrofisica (INAF) working in the field of circumstellar disks and jets in young stars, to discuss together the different agents affecting the structure and the evolution of disks, namely accretion, jets and winds. More information on the JEDI group and its activities can be found at \texttt{http://www.oa-roma.inaf.it/irgroup/JEDI}.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To investigate the disk formation and jet launch in protostars is crucial to comprehend the earliest stages of star and planet formation. We aim to constrain the properties of the molecular jet and the disk of the HH 212 protostellar system at unprecedented angular scales through ALMA observations of sulfur-bearing molecules, SO 9(8)-8(7), SO 10(11)-10(10), SO2 8(2,6)-7(1,7). SO 9(8)-8(7) and SO2 8(2,6)-7(1,7) show broad velocity profiles. At systemic velocity they probe the circumstellar gas and the cavity walls. Going from low to high blue-/red-shifted velocities the emission traces the wide-angle outflow and the fast (~100-200 km/s) and collimated (~90 AU) molecular jet revealing the inner knots with timescales <50 years. The jet transports a mass loss rate >0.2-2e-6 Msun/yr, implying high ejection efficiency (>0.03-0.3). The SO and SO2 abundances in the jet are ~1e-7-1e-6. SO 10(11)-10(10) emission is compact and shows small-scale velocity gradients indicating that it originates partly from the rotating disk previously seen in HCO+ and C17O, and partly from the base of the jet. The disk mass is >0.002-0.013 Msun, and the SO abundance in the disk is ~1e-8-1e-7. SO and SO2 are effective tracers of the molecular jet in the inner few hundreds AU from the protostar. Their abundances indicate that 1% - 40% of sulfur is in SO and SO2 due to shocks in the jet/outflow and/or to ambipolar diffusion at the wind base. The SO abundance in the disk is 3-4 orders of magnitude larger than in evolved protoplanetary disks. This may be due to an SO enhancement in the accretion shock at the envelope-disk interface or in spiral shocks if the disk is partly gravitationally unstable.
    Astronomy and Astrophysics 05/2015; DOI:10.1051/0004-6361/201525778 · 4.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present Herschel PACS mapping observations of the [O i] 63 μm line toward protostellar outflows in the L1448, NGC 1333-IRAS4, HH 46, BHR 71, and VLA 1623 star-forming regions. We detect emission spatially resolved along the outflow direction, which can be associated with a low-excitation atomic jet. In the L1448-C, HH 46 IRS, and BHR 71 IRS1 outflows this emission is kinematically resolved into blue- and redshifted jet lobes, having radial velocities up to 200 km s−1. In the L1448-C atomic jet the velocity increases with the distance from the protostar, similarly to what is observed in the SiO jet associated with this source. This suggests that [O i] and molecular gas are kinematically connected and that the latter could represent the colder cocoon of a jet at higher excitation. Mass flux rates ((O i)) have been measured from the [O i] 63 μm luminosity adopting two independent methods. We find values in the range (1-4) × 10−7 yr−1 for all sources except HH 46, for which an order of magnitude higher value is estimated. (O i) are compared with mass accretion rates (acc) onto the protostar and with derived from ground-based CO observations. (O i)/acc ratios are in the range 0.05-0.5, similar to the values for more evolved sources. (O i) in HH 46 IRS and IRAS4A are comparable to (CO), while those of the remaining sources are significantly lower than the corresponding (CO). We speculate that for these three sources most of the mass flux is carried out by a molecular jet, while the warm atomic gas does not significantly contribute to the dynamics of the system.
    The Astrophysical Journal 03/2015; 801(2):121. DOI:10.1088/0004-637X/801/2/121 · 6.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: V1118 Ori is an eruptive variable belonging to the EXor class of Pre-Main Sequence stars whose episodic outbursts are attributed to disk accretion events. Since 2006, V1118 Ori is in the longest quiescence stage ever observed between two subsequent outbursts of its recent history. We present near-infrared photometry of V1118 Ori carried out during the last eight years, along with a complete spectroscopic coverage from 0.35 to 2.5 um. A longterm sampling of V1118 Ori in quiescence has never been done, hence we can benefit from the current circumstance to determine the lowest values (i.e. the zeroes) of the parameters to be used as a reference for evaluating the physical changes typical of more active phases. A quiescence mass accretion rate between 1--3 $\times$ 10$^{-9}$ M$_{\sun}$ yr$^{-1}$ can be derived and the difference with previous determinations is discussed. From line emission and IR colors analysis a visual extinction of 1-2 mag is consistently derived, confirming that V1118 Ori (at least in quiescence) is a low-extinction T Tauri star with a bolometric luminosity of about 2.1 L$_{\sun}$. An anti-correlation exists between the equivalent width of the emission lines and the underlying continuum. We searched the literature for evaluating whether or not such a behaviour is a common feature of the whole class. The anti-correlation is clearly recognizable for all the available EXors in the optical range (H$\beta$ and H$\alpha$ lines), while it is not as much evident in the infrared (Pa$\beta$ and Br$\gamma$ lines). The observed anti-correlation supports the accretion-driven mechanism as the most likely to account for continuum variations.
    The Astrophysical Journal 01/2015; 802(1). DOI:10.1088/0004-637X/802/1/24 · 6.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present Herschel PACS mapping observations of the [OI]63 micron line towards protostellar outflows in the L1448, NGC1333-IRAS4, HH46, BHR71 and VLA1623 star forming regions. We detect emission spatially resolved along the outflow direction, which can be associated with a low excitation atomic jet. In the L1448-C, HH46 IRS and BHR71 IRS1 outflows this emission is kinematically resolved into blue- and red-shifted jet lobes, having radial velocities up to 200 km/s. In the L1448-C atomic jet the velocity increases with the distance from the protostar, similarly to what observed in the SiO jet associated with this source. This suggests that [OI] and molecular gas are kinematically connected and that this latter could represent the colder cocoon of a jet at higher excitation. Mass flux rates (\.M$_{jet}$(OI)) have been measured from the [OI]63micron luminosity adopting two independent methods. We find values in the range 1-4 10$^{-7}$ Mo/yr for all sources but HH46, for which an order of magnitude higher value is estimated. \.M$_{jet}$(OI) are compared with mass accretion rates (\.M$_{acc}$) onto the protostar and with \.M$_{jet}$ derived from ground-based CO observations. \.M$_{jet}$(OI)/\.M$_{acc}$ ratios are in the range 0.05-0.5, similar to the values for more evolved sources. \.M$_{jet}$(OI) in HH46 IRS and IRAS4A are comparable to \.M$_{jet}$(CO), while those of the remaining sources are significantly lower than the corresponding \.M$_{jet}$(CO). We speculate that for these three sources most of the mass flux is carried out by a molecular jet, while the warm atomic gas does not significantly contribute to the dynamics of the system.
  • [Show abstract] [Hide abstract]
    ABSTRACT: VizieR On-line Data Catalog: J/A+A/572/A21. Originally published in: 2014A&A...572A..21M
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Einstein spontaneous rates (A-coefficients) of Fe^+ lines have been computed by several authors, with results that differ from each other up to 40%. Consequently, models for line emissivities suffer from uncertainties which in turn affect the determination of the physical conditions at the base of line excitation. We provide an empirical determination of the A-coefficient ratios of bright [Fe II] lines, which would represent both a valid benchmark for theoretical computations and a reference for the physical interpretation of the observed lines. With the ESO-VLT X-shooter instrument between 3,000 A, and 24,700 A, we obtained a spectrum of the bright Herbig-Haro object HH1. We detect around 100 [Fe II] lines, some of which with a signal-to-noise ratio > 100. Among these latter, we selected those emitted by the same level, whose de-reddened intensity ratio is a direct function of the Einstein A-coefficient ratios. From the same X-shooter spectrum, we got an accurate estimate of the extinction toward HH1 through intensity ratios of atomic species, HI, recombination lines and H_2 ro-vibrational transitions. We provide seven reliable A-ooefficient ratios between bright [Fe II] lines, which are compared with the literature determinations. In particular, the A-coefficient ratios involving the brightest near-infrared lines (12570A/16440A and 13209A/16440A) are better in agreement with the predictions by Quinet et al. (1996) Relativistic Hartree-Fock model. However, none of the theoretical models predicts A-coefficient ratios in agreement with all our determinations. We also show that literature data of near-infrared intensity ratios better agree with our determinations than with theoretical expectations.
    The Astrophysical Journal 10/2014; 798(1). DOI:10.1088/0004-637X/798/1/33 · 6.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present a multiline CS survey towards the brightest bow-shock B1 in the prototypical chemically active protostellar outflow L1157. We made use of (sub-)mm data obtained in the framework of the Chemical HErschel Surveys of Star forming regions and Astrochemical Surveys at IRAM (ASAI) key science programs. We detected 12C32S, 12C34S, 13C32S, and 12C33S emissions, for a total of 18 transitions, with Eu up to ∼180 K. The unprecedented sensitivity of the survey allows us to carefully analyse the line profiles, revealing high-velocity emission, up to 20 km s−1 with respect to the systemic. The profiles can be well fitted by a combination of two exponential laws that are remarkably similar to what previously found using CO. These components have been related to the cavity walls produced by the ∼2000 yr B1 shock and the older (∼4000 yr) B2 shock, respectively. The combination of low- and high-excitation CS emission was used to properly sample the different physical components expected in a shocked region. Our CS observations show that this molecule is highlighting the dense, nH2 = 1–5 × 105 cm−3, cavity walls produced by the episodic outflow in L1157. In addition, the highest excitation (Eu ≥ 130 K) CS lines provide us with the signature of denser (1–5 × 106 cm−3) gas, associated with a molecular reformation zone of a dissociative J-type shock, which is expected to arise where the precessing jet impacting the molecular cavities. The CS fractional abundance increases up to ∼10−7 in all the kinematical components. This value is consistent with what previously found for prototypical protostars and it is in agreement with the prediction of the abundances obtained via the chemical code Astrochem.
    Monthly Notices of the Royal Astronomical Society 10/2014; 446(4). DOI:10.1093/mnras/stu2311 · 5.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: As part of the POISSON project (Protostellar Optical-Infrared Spectral Survey on NTT), we present the results of the analysis of low-resolution NIR spectra 0.9-2.4 um) of two samples of YSOs in Lupus and Serpens (52 and 17 objects), with masses 0.1-2.0 Msun and ages from 10^5 to a few 10^7 yr. After determining the accretion parameters of the Lup and Ser targets by analysing their HI near-IR emission features, we added the results to those from previous regions (investigated in POISSON with the same methodology). We obtained a final catalogue (143 objects) of mass accretion rates (Macc) derived in a homogeneous fashion and analysed how Macc correlates with M* and how it evolves in time. We derived the accretion luminosity (Lacc) and Macc for Lup and Ser objects from the Br_gamma line by using relevant empirical relationships from the literature that connect HI line luminosity and Lacc. To minimise the biases and also for self-consistency, we re-derived mass and age for each source using the same set of evolutionary tracks. We observe a correlation MaccM*^2.2, similarly to what has previously been observed in several star-forming clouds. The time variation of Macc is roughly consistent with the expected evolution in viscous disks, with an asymptotic decay that behaves as t^-1.6. However, Macc values are characterised by a large scatter at similar ages and are on average higher than the predictions of viscous models. Although part of the scattering may be related to the employed empirical relationship and to uncertainties on the single measurements, the general distribution and decay trend of the Macc points are real. These findings might be indicative of a large variation in the initial mass of the disks, of fairly different viscous laws among disks, of varying accretion regimes, and of other mechanisms that add to the dissipation of the disks, such as photo-evaporation.
    Astronomy and Astrophysics 10/2014; DOI:10.1051/0004-6361/201423929 · 4.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The HH54 shock is a Herbig-Haro object, located in the nearby Chamaeleon II cloud. Observed CO line profiles are due to a complex distribution in density, temperature, velocity, and geometry. Resolving the HH54 shock wave in the far-infrared cooling lines of CO constrain the kinematics, morphology, and physical conditions of the shocked region. We used the PACS and SPIRE instruments on board the Herschel space observatory to map the full FIR spectrum in a region covering the HH54 shock wave. Complementary Herschel-HIFI, APEX, and Spitzer data are used in the analysis as well. The observed features in the line profiles are reproduced using a 3D radiative transfer model of a bow-shock, constructed with the Line Modeling Engine code (LIME). The FIR emission is confined to the HH54 region and a coherent displacement of the location of the emission maximum of CO with increasing J is observed. The peak positions of the high-J CO lines are shifted upstream from the lower J CO lines and coincide with the position of the spectral feature identified previously in CO(10-9) profiles with HIFI. This indicates a hotter molecular component in the upstream gas with distinct dynamics. The coherent displacement with increasing J for CO is consistent with a scenario where IRAS12500-7658 is the exciting source of the flow, and the 180 K bow-shock is accompanied by a hot (800 K) molecular component located upstream from the apex of the shock and blueshifted by -7 km s$^{-1}$. The spatial proximity of this knot to the peaks of the atomic fine-structure emission lines observed with Spitzer and PACS ([OI]63, 145 $\mu$m) suggests that it may be associated with the dissociative shock as the jet impacts slower moving gas in the HH54 bow-shock.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Context: Outflows are an important part of the star formation process as both the result of ongoing active accretion and one of the main sources of mechanical feedback on small scales. Water is the ideal tracer of these effects because it is present in high abundance in various parts of the protostar. Method: We present \textit{Herschel} HIFI spectra of multiple water-transitions towards 29 nearby Class 0/I protostars as part of the WISH Survey. These are decomposed into different Gaussian components, with each related to one of three parts of the protostellar system; quiescent envelope, cavity shock and spot shocks in the jet and at the base of the outflow. We then constrain the excitation conditions present in the two outflow-related components. Results: Water emission is optically thick but effectively thin, with line ratios that do not vary with velocity, in contrast to CO. The physical conditions of the cavity and spot shocks are similar, with post-shock H$_{2}$ densities of order 10$^{5}-$10$^{8}$\,cm$^{-3}$ and H$_{2}$O column densities of order 10$^{16}-$10$^{18}$\,cm$^{-2}$. H$_{2}$O emission originates in compact emitting regions: for the spot shocks these correspond to point sources with radii of order 10-200\,AU, while for the cavity shocks these come from a thin layer along the outflow cavity wall with thickness of order 1-30\,AU. Conclusions: Water emission at the source position traces two distinct kinematic components in the outflow; J shocks at the base of the outflow or in the jet, and C shocks in a thin layer in the cavity wall. Class I sources have similar excitation conditions to Class 0 sources, but generally smaller line-widths and emitting region sizes. We suggest that it is the velocity of the wind driving the outflow, rather than the decrease in envelope density or mass, that is the cause of the decrease in H$_{2}$O intensity between Class 0 and I.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Protostars interact with their surroundings through jets and winds impacting on the envelope and creating shocks, but the nature of these shocks is still poorly understood. Our aim is to survey far-infrared molecular line emission from a uniform and significant sample of deeply-embedded low-mass young stellar objects in order to characterize shocks and the possible role of ultraviolet radiation in the immediate protostellar environment. Herschel/PACS spectral maps of 22 objects in the Perseus molecular cloud were obtained as part of the `William Herschel Line Legacy' survey. Line emission from H$_\mathrm{2}$O, CO, and OH is tested against shock models from the literature. Observed line ratios are remarkably similar and do not show variations with source physical parameters. Observations show good agreement with the shock models when line ratios of the same species are compared. Ratios of various H$_\mathrm{2}$O lines provide a particularly good diagnostic of pre-shock gas densities, $n_\mathrm{H}\sim10^{5}$ cm$^{-3}$, in agreement with typical densities obtained from observations of the post-shock gas. The corresponding shock velocities, obtained from comparison with CO line ratios, are above 20 km\,s$^{-1}$. However, the observations consistently show one-to-two orders of magnitude lower H$_\mathrm{2}$O-to-CO and H$_\mathrm{2}$O-to-OH line ratios than predicted by the existing shock models. The overestimated model H$_\mathrm{2}$O fluxes are most likely caused by an overabundance of H$_\mathrm{2}$O in the models since the excitation is well-reproduced. Illumination of the shocked material by ultraviolet photons produced either in the star-disk system or, more locally, in the shock, would decrease the H$_\mathrm{2}$O abundances and reconcile the models with observations. Detections of hot H$_\mathrm{2}$O and strong OH lines support this scenario.
    Astronomy and Astrophysics 09/2014; 572. DOI:10.1051/0004-6361/201424166 · 4.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Context: Herschel observations suggest that the H$_2$O distribution in outflows from low-mass stars resembles the H$_2$ emission. It is still unclear which of the different excitation components that characterise the mid- and near-IR H$_2$ distribution is associated with H$_2$O. Aim: The aim is to spectrally resolve the different excitation components observed in the H$_2$ emission. This will allow us to identify the H$_2$ counterpart associated with H$_2$O and finally derive directly an H$_2$O abundance estimate with respect to H$_2$. Methods: We present new high spectral resolution observations of H$_2$ 0-0 S(4), 0-0 S(9), and 1-0 S(1) towards HH 54, a bright nearby shock region in the southern sky. In addition, new Herschel-HIFI H$_2$O (2$_{12}$$-$1$_{01}$) observations at 1670~GHz are presented. Results: Our observations show for the first time a clear separation in velocity of the different H$_2$ lines: the 0-0 S(4) line at the lowest excitation peaks at $-$7~km~s$^{-1}$, while the more excited 0-0 S(9) and 1-0 S(1) lines peak at $-$15~km~s$^{-1}$. H$_2$O and high-$J$ CO appear to be associated with the H$_2$ 0-0 S(4) emission, which traces a gas component with a temperature of 700$-$1000 K. The H$_2$O abundance with respect to H$_2$ 0-0 S(4) is estimated to be $X$(H$_2$O)$<$1.4$\times$10$^{-5}$ in the shocked gas over an area of 13$^{\prime\prime}$. Conclusions: We resolve two distinct gas components associated with the HH 54 shock region at different velocities and excitations. This allows us to constrain the temperature of the H$_2$O emitting gas ($\leq$1000 K) and to derive correct estimates of H$_2$O abundance in the shocked gas, which is lower than what is expected from shock model predictions.
    Astronomy and Astrophysics 09/2014; 569. DOI:10.1051/0004-6361/201424748 · 4.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: As the number of observed brown dwarf outflows is growing it is important to investigate how these outflows compare to the well studied jets from young stellar objects. A key point of comparison is the relationship between outflow and accretion activity and in particular the ratio between the mass outflow and accretion rates ($\dot{M}_{out}$/$\dot{M}_{acc}$). The brown dwarf candidate ISO-ChaI 217 was discovered by our group, as part of a spectro-astrometric study of brown dwarfs, to be driving an asymmetric outflow with the blue-shifted lobe having a position angle of $\sim$ 20$^{\circ}$. The aim here is to further investigate the properties of ISO-ChaI 217, the morphology and kinematics of its outflow, and to better constrain ($\dot{M}_{out}$/$\dot{M}_{acc}$). The outflow is spatially resolved in the $[SII]\lambda \lambda 6716,6731$ lines and is detected out to $\sim$ 1\farcs6 in the blue-shifted lobe and ~ 1" in the red-shifted lobe. The asymmetry between the two lobes is confirmed although the velocity asymmetry is less pronounced with respect to our previous study. Using thirteen different accretion tracers we measure log($\dot{M}_{acc}$) [M$_{sun}$/yr]= -10.6 $\pm$ 0.4. As it was not possible to measure the effect of extinction on the ISO-ChaI 217 outflow $\dot{M}_{out}$ was derived for a range of values of A$_{v}$, up to a value of A$_{v}$ = 2.5 mag estimated for the source extinction. The logarithm of the mass outflow ($\dot{M}_{out}$) was estimated in the range -11.7 to -11.1 for both jets combined. Thus $\dot{M}_{out}$/$\dot{M}_{acc}$ [\Msun/yr] lies below the maximum value predicted by magneto-centrifugal jet launching models. Finally, both model fitting of the Balmer decrements and spectro-astrometric analysis of the H$\alpha$ line show that the bulk of the H I emission comes from the accretion flow.
    Astronomy and Astrophysics 08/2014; 570. DOI:10.1051/0004-6361/201424067 · 4.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Context: Because it is viewed simply edge-on, the HH212 protostellar system is an ideal laboratory for studying the interplay of infall, outflow, and rotation in the earliest stages of low-mass star formation. Aims: We wish to exploit the unmatched combination of high angular resolution, high sensitivity, high-imaging fidelity, and spectral coverage provided by ALMA to shed light on the complex kinematics of the innermost central regions of HH212. Methods: We mapped the inner 10" (4500 AU) of the HH212 system at about 0.5 arcsec resolution in several molecular tracers and in the 850 $\mu$m dust continuum using the ALMA interferometer in band 7 in the extended configuration of the Early Science Cycle 0 operations. Results: Within a single ALMA spectral set-up, we simultaneously identify all the crucial ingredients known to be involved in the star formation recipe namely: (i) the fast, collimated bipolar SiO jet driven by the protostar, (ii) the large-scale swept-up CO outflow, (iii) the flattened rotating and infalling envelope, with bipolar cavities carved by the outflow (in C$^{17}$O(3--2)), and (iv) a rotating wide-angle flow that fills the cavities and surrounding the axial jet (in C$^{34}$S(7--6)). In addition, the compact high-velocity C$^{17}$O emission ($\pm$ 1.9--3.5 km s$^{-1}$ from systemic) shows a velocity gradient along the equatorial plane consistent with a rotating disk of about 0.2 arcsec = 90 AU around a $\simeq 0.3 \pm 0.1 M_{\rm \odot}$ source. The rotating disk is possibly Keplerian. Conclusions: HH212 is the third Class 0 protostar with possible signatures of a Keplerian disk of radius $\geq 30 AU$. The warped geometry in our CS data suggests that this large keplerian disk might result from misaligned magnetic and rotation axes during the collapse phase. The wide-angle CS flow suggests that disk winds may be present in this source.
    Astronomy and Astrophysics 07/2014; 568. DOI:10.1051/0004-6361/201424103 · 4.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present the study of the H2O spatial distribution at two bright shocked regions along IRAS4A, one of the strongest H2O emitters among the Class 0 outflows. We obtained Herschel-PACS maps of the IRAS4A outflow and HIFI observations of two shocked positions. The largest HIFI beam of 38 arcsec at 557 GHz was mapped in several key water lines with different upper energy levels, to reveal possible spatial variations of the line profiles. We detect four H2O lines and CO (16-15) at the two selected positions. In addition, transitions from related outflow and envelope tracers are detected. Different gas components associated with the shock are identified in the H2O emission. In particular, at the head of the red lobe of the outflow, two distinct gas components with different excitation conditions are distinguished in the HIFI emission maps: a compact component, detected in the ground-state water lines, and a more extended one. Assuming that these two components correspond to two different temperature components observed in previous H2O and CO studies, the excitation analysis of the H2O emission suggests that the compact (about 3 arcsec) component is associated with a hot (T~1000 K) gas with densities ~(1-4)x10^5 cm^{-3}, whereas the extended one (10-17 arcsec) traces a warm (T~300-500 K) and dense gas (~(3-5)x10^7 cm^{-3}). Finally, using the CO (16-15) emission observed at R2, we estimate the H2O/H2 abundance of the warm and hot components to be (7-10)x10^{-7} and (3-7)x10^{-5}. Our data allowed us, for the first time, to resolve spatially the two temperature components previously observed with HIFI and PACS. We propose that the compact hot component may be associated with the jet that impacts the surrounding material, whereas the warm, dense, and extended component originates from the compression of the ambient gas by the propagating flow.
    Astronomy and Astrophysics 06/2014; 568. DOI:10.1051/0004-6361/201424034 · 4.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Dense atomic jets from young stars copiously emit in [FeII] IR lines, which can, therefore, be used to trace the immediate environments of embedded protostars. We want to investigate the morphology of the bright [FeII] 1.64um line in the jet of the source HH34 IRS and compare it with the most commonly used optical tracer [SII]. We analyse a 1.64um narrow-band filter image obtained with the Large Binocular Telescope (LBT) LUCI instrument, which covers the HH34 jet and counterjet. A Point Spread Function (PSF) deconvolution algorithm was applied to enhance spatial resolution and make the IR image directly comparable to a [SII] HST image of the same source. The [FeII] emission is detected from both the jet, the (weak) counter-jet, and from the HH34-S and HH34-N bow shocks. The deconvolved image allows us to resolve jet knots close to about 1\arcsec from the central source. The morphology of the [FeII] emission is remarkably similar to that of the [SII] emission, and the relative positions of [FeII] and [SII] peaks are shifted according to proper motion measurements, which were previously derived from HST images. An analysis of the [FeII]/[SII] emission ratio shows that Fe gas abundance is much lower than the solar value with up to 90% of Fe depletion in the inner jet knots. This confirms previous findings on dusty jets, where shocks are not efficient enough to remove refractory species from grains.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report on the ongoing outburst of the young variable V1180 Cas, which is known to display characteristics in common with EXor eruptive variables. We present results that support the scenario of an accretion-driven nature of the brightness variations of the object and provide the first evidence of jet structures around the source. We monitored the recent flux variations of the target in the Rc, J, H, and K bands. New optical and near-IR spectra taken during the current high state of V1180 Cas are presented, in conjunction with H2 narrow-band imaging of the source. Observed near-IR colour variations are analogous to those observed in EXors and consistent with excess emission originating from an accretion event. The spectra show numerous emission lines, which indicates accretion, ejection of matter, and an active disc. Using optical and near-IR emission features we derive a mass accretion rate of ~3 E-8 Msun/yr, which is an order of magnitude lower than previous estimates. In addition, a mass loss rate of ~4 E-9 and ~4 E-10 Msun/yr are estimated from atomic forbidden lines and H2, respectively. Our H2 imaging reveals two bright knots of emission around the source and the nearby optically invisible star V1180 Cas B, clearly indicative of mass-loss phenomena. Higher resolution observations of the detected jet will help to clarify whether V1180 Cas is the driving source and to determine the relation between the observed knots.
    Astronomy and Astrophysics 05/2014; 565. DOI:10.1051/0004-6361/201423962 · 4.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this paper a comprehensive analysis of VLT / X-Shooter observations of two jet systems, namely ESO-H$\alpha$ 574 a K8 classical T Tauri star and Par-Lup 3-4 a very low mass (0.13~\Msun) M5 star, is presented. Both stars are known to have near-edge on accretion disks. A summary of these first X-shooter observations of jets was given in a 2011 letter. The new results outlined here include flux tables of identified emission lines, information on the morphology, kinematics and physical conditions of both jets and, updated estimates of $\dot{M}_{out}$ / $\dot{M}_{acc}$. Asymmetries in the \eso flow are investigated while the \para jet is much more symmetric. The density, temperature, and therefore origin of the gas traced by the Balmer lines are investigated from the Balmer decrements and results suggest an origin in a jet for \eso while for \para the temperature and density are consistent with an accretion flow. $\dot{M}_{acc}$ is estimated from the luminosity of various accretion tracers. For both targets, new luminosity relationships and a re-evaluation of the effect of reddening and grey extinction (due to the edge-on disks) allows for substantial improvements on previous estimates of $\dot{M}_{acc}$. It is found that log($\dot{M}_{acc}$) = -9.15 $\pm$ 0.45~\Msun yr$^{-1}$ and -9.30 $\pm$ 0.27~\Msun yr$^{-1}$ for \eso and \para respectively. Additionally, the physical conditions in the jets (electron density, electron temperature, and ionisation) are probed using various line ratios and compared with previous determinations from iron lines. The results are combined with the luminosity of the [SII]$\lambda$6731 line to derive $\dot{M}_{out}$ through a calculation of the gas emissivity based on a 5-level atom model.
    Astronomy and Astrophysics 03/2014; 565. DOI:10.1051/0004-6361/201322037 · 4.48 Impact Factor

Publication Stats

2k Citations
654.50 Total Impact Points

Institutions

  • 1997–2014
    • The Astronomical Observatory of Brera
      Merate, Lombardy, Italy
  • 1987–2013
    • University of Florence
      Florens, Tuscany, Italy
  • 2010
    • National Institute of Astrophysics
      Roma, Latium, Italy
  • 2009
    • Harvard-Smithsonian Center for Astrophysics
      • Smithsonian Astrophysical Observatory
      Cambridge, Massachusetts, United States
  • 1997–2007
    • University of Rome Tor Vergata
      • Dipartimento di Fisica
      Roma, Latium, Italy
  • 2002–2006
    • University of Cambridge
      Cambridge, England, United Kingdom
    • Università del Salento
      Lecce, Apulia, Italy
    • Cornell University
      Итак, New York, United States
  • 2005
    • Dublin Institute for Advanced Studies
      Dublin, Leinster, Ireland
  • 1998
    • Queen Mary, University of London
      Londinium, England, United Kingdom
  • 1992
    • The American University of Rome
      Roma, Latium, Italy