B. Nisini

The Astronomical Observatory of Brera, Merate, Lombardy, Italy

Are you B. Nisini?

Claim your profile

Publications (253)566.47 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present a multiline CS survey towards the brightest bow-shock B1 in the prototypical chemically active protostellar outflow L1157. We made use of (sub-)mm data obtained in the framework of the Chemical HErschel Surveys of Star forming regions (CHESS) and Astrochemical Surveys at IRAM (ASAI) key science programs. We detected $^{12}$C$^{32}$S, $^{12}$C$^{34}$S, $^{13}$C$^{32}$S, and $^{12}$C$^{33}$S emissions, for a total of 18 transitions, with $E_{\rm u}$ up to $\sim$ 180 K. The unprecedented sensitivity of the survey allows us to carefully analyse the line profiles, revealing high-velocity emission, up to 20 km s$^{-1}$ with respect to the systemic. The profiles can be well fitted by a combination of two exponential laws that are remarkably similar to what previously found using CO. These components have been related to the cavity walls produced by the $\sim$ 2000 yr B1 shock and the older ($\sim$ 4000 yr) B2 shock, respectively. The combination of low- and high-excitation CS emission was used to properly sample the different physical components expected in a shocked region. Our CS observations show that this molecule is highlighting the dense, $n_{\rm H_2}$ = 1--5 $\times$ 10$^{5}$ cm$^{-3}$, cavity walls produced by the episodic outflow in L1157. In addition, the highest excitation (E$_u$ $\geq$ 130 K) CS lines provide us with the signature of denser (1--5 $\times$ 10$^{6}$ cm$^{-3}$) gas, associated with a molecular reformation zone of a dissociative J-type shock, which is expected to arise where the precessing jet impacting the molecular cavities. The CS fractional abundance increases up to $\sim$ 10$^{-7}$ in all the kinematical components. This value is consistent with what previously found for prototypical protostars and it is in agreement with the prediction of the abundances obtained via the chemical code Astrochem.
    10/2014; 446(4).
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Einstein spontaneous rates (A-coefficients) of Fe^+ lines have been computed by several authors, with results that differ from each other up to 40%. Consequently, models for line emissivities suffer from uncertainties which in turn affect the determination of the physical conditions at the base of line excitation. We provide an empirical determination of the A-coefficient ratios of bright [Fe II] lines, which would represent both a valid benchmark for theoretical computations and a reference for the physical interpretation of the observed lines. With the ESO-VLT X-shooter instrument between 3,000 A, and 24,700 A, we obtained a spectrum of the bright Herbig-Haro object HH1. We detect around 100 [Fe II] lines, some of which with a signal-to-noise ratio > 100. Among these latter, we selected those emitted by the same level, whose de-reddened intensity ratio is a direct function of the Einstein A-coefficient ratios. From the same X-shooter spectrum, we got an accurate estimate of the extinction toward HH1 through intensity ratios of atomic species, HI, recombination lines and H_2 ro-vibrational transitions. We provide seven reliable A-ooefficient ratios between bright [Fe II] lines, which are compared with the literature determinations. In particular, the A-coefficient ratios involving the brightest near-infrared lines (12570A/16440A and 13209A/16440A) are better in agreement with the predictions by Quinet et al. (1996) Relativistic Hartree-Fock model. However, none of the theoretical models predicts A-coefficient ratios in agreement with all our determinations. We also show that literature data of near-infrared intensity ratios better agree with our determinations than with theoretical expectations.
    10/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: As part of the POISSON project (Protostellar Optical-Infrared Spectral Survey on NTT), we present the results of the analysis of low-resolution NIR spectra 0.9-2.4 um) of two samples of YSOs in Lupus and Serpens (52 and 17 objects), with masses 0.1-2.0 Msun and ages from 10^5 to a few 10^7 yr. After determining the accretion parameters of the Lup and Ser targets by analysing their HI near-IR emission features, we added the results to those from previous regions (investigated in POISSON with the same methodology). We obtained a final catalogue (143 objects) of mass accretion rates (Macc) derived in a homogeneous fashion and analysed how Macc correlates with M* and how it evolves in time. We derived the accretion luminosity (Lacc) and Macc for Lup and Ser objects from the Br_gamma line by using relevant empirical relationships from the literature that connect HI line luminosity and Lacc. To minimise the biases and also for self-consistency, we re-derived mass and age for each source using the same set of evolutionary tracks. We observe a correlation MaccM*^2.2, similarly to what has previously been observed in several star-forming clouds. The time variation of Macc is roughly consistent with the expected evolution in viscous disks, with an asymptotic decay that behaves as t^-1.6. However, Macc values are characterised by a large scatter at similar ages and are on average higher than the predictions of viscous models. Although part of the scattering may be related to the employed empirical relationship and to uncertainties on the single measurements, the general distribution and decay trend of the Macc points are real. These findings might be indicative of a large variation in the initial mass of the disks, of fairly different viscous laws among disks, of varying accretion regimes, and of other mechanisms that add to the dissipation of the disks, such as photo-evaporation.
    Astronomy and Astrophysics 10/2014; · 5.08 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The HH54 shock is a Herbig-Haro object, located in the nearby Chamaeleon II cloud. Observed CO line profiles are due to a complex distribution in density, temperature, velocity, and geometry. Resolving the HH54 shock wave in the far-infrared cooling lines of CO constrain the kinematics, morphology, and physical conditions of the shocked region. We used the PACS and SPIRE instruments on board the Herschel space observatory to map the full FIR spectrum in a region covering the HH54 shock wave. Complementary Herschel-HIFI, APEX, and Spitzer data are used in the analysis as well. The observed features in the line profiles are reproduced using a 3D radiative transfer model of a bow-shock, constructed with the Line Modeling Engine code (LIME). The FIR emission is confined to the HH54 region and a coherent displacement of the location of the emission maximum of CO with increasing J is observed. The peak positions of the high-J CO lines are shifted upstream from the lower J CO lines and coincide with the position of the spectral feature identified previously in CO(10-9) profiles with HIFI. This indicates a hotter molecular component in the upstream gas with distinct dynamics. The coherent displacement with increasing J for CO is consistent with a scenario where IRAS12500-7658 is the exciting source of the flow, and the 180 K bow-shock is accompanied by a hot (800 K) molecular component located upstream from the apex of the shock and blueshifted by -7 km s$^{-1}$. The spatial proximity of this knot to the peaks of the atomic fine-structure emission lines observed with Spitzer and PACS ([OI]63, 145 $\mu$m) suggests that it may be associated with the dissociative shock as the jet impacts slower moving gas in the HH54 bow-shock.
    09/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Context: Outflows are an important part of the star formation process as both the result of ongoing active accretion and one of the main sources of mechanical feedback on small scales. Water is the ideal tracer of these effects because it is present in high abundance in various parts of the protostar. Method: We present \textit{Herschel} HIFI spectra of multiple water-transitions towards 29 nearby Class 0/I protostars as part of the WISH Survey. These are decomposed into different Gaussian components, with each related to one of three parts of the protostellar system; quiescent envelope, cavity shock and spot shocks in the jet and at the base of the outflow. We then constrain the excitation conditions present in the two outflow-related components. Results: Water emission is optically thick but effectively thin, with line ratios that do not vary with velocity, in contrast to CO. The physical conditions of the cavity and spot shocks are similar, with post-shock H$_{2}$ densities of order 10$^{5}-$10$^{8}$\,cm$^{-3}$ and H$_{2}$O column densities of order 10$^{16}-$10$^{18}$\,cm$^{-2}$. H$_{2}$O emission originates in compact emitting regions: for the spot shocks these correspond to point sources with radii of order 10-200\,AU, while for the cavity shocks these come from a thin layer along the outflow cavity wall with thickness of order 1-30\,AU. Conclusions: Water emission at the source position traces two distinct kinematic components in the outflow; J shocks at the base of the outflow or in the jet, and C shocks in a thin layer in the cavity wall. Class I sources have similar excitation conditions to Class 0 sources, but generally smaller line-widths and emitting region sizes. We suggest that it is the velocity of the wind driving the outflow, rather than the decrease in envelope density or mass, that is the cause of the decrease in H$_{2}$O intensity between Class 0 and I.
    09/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Protostars interact with their surroundings through jets and winds impacting on the envelope and creating shocks, but the nature of these shocks is still poorly understood. Our aim is to survey far-infrared molecular line emission from a uniform and significant sample of deeply-embedded low-mass young stellar objects in order to characterize shocks and the possible role of ultraviolet radiation in the immediate protostellar environment. Herschel/PACS spectral maps of 22 objects in the Perseus molecular cloud were obtained as part of the `William Herschel Line Legacy' survey. Line emission from H$_\mathrm{2}$O, CO, and OH is tested against shock models from the literature. Observed line ratios are remarkably similar and do not show variations with source physical parameters. Observations show good agreement with the shock models when line ratios of the same species are compared. Ratios of various H$_\mathrm{2}$O lines provide a particularly good diagnostic of pre-shock gas densities, $n_\mathrm{H}\sim10^{5}$ cm$^{-3}$, in agreement with typical densities obtained from observations of the post-shock gas. The corresponding shock velocities, obtained from comparison with CO line ratios, are above 20 km\,s$^{-1}$. However, the observations consistently show one-to-two orders of magnitude lower H$_\mathrm{2}$O-to-CO and H$_\mathrm{2}$O-to-OH line ratios than predicted by the existing shock models. The overestimated model H$_\mathrm{2}$O fluxes are most likely caused by an overabundance of H$_\mathrm{2}$O in the models since the excitation is well-reproduced. Illumination of the shocked material by ultraviolet photons produced either in the star-disk system or, more locally, in the shock, would decrease the H$_\mathrm{2}$O abundances and reconcile the models with observations. Detections of hot H$_\mathrm{2}$O and strong OH lines support this scenario.
    09/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Context: Herschel observations suggest that the H$_2$O distribution in outflows from low-mass stars resembles the H$_2$ emission. It is still unclear which of the different excitation components that characterise the mid- and near-IR H$_2$ distribution is associated with H$_2$O. Aim: The aim is to spectrally resolve the different excitation components observed in the H$_2$ emission. This will allow us to identify the H$_2$ counterpart associated with H$_2$O and finally derive directly an H$_2$O abundance estimate with respect to H$_2$. Methods: We present new high spectral resolution observations of H$_2$ 0-0 S(4), 0-0 S(9), and 1-0 S(1) towards HH 54, a bright nearby shock region in the southern sky. In addition, new Herschel-HIFI H$_2$O (2$_{12}$$-$1$_{01}$) observations at 1670~GHz are presented. Results: Our observations show for the first time a clear separation in velocity of the different H$_2$ lines: the 0-0 S(4) line at the lowest excitation peaks at $-$7~km~s$^{-1}$, while the more excited 0-0 S(9) and 1-0 S(1) lines peak at $-$15~km~s$^{-1}$. H$_2$O and high-$J$ CO appear to be associated with the H$_2$ 0-0 S(4) emission, which traces a gas component with a temperature of 700$-$1000 K. The H$_2$O abundance with respect to H$_2$ 0-0 S(4) is estimated to be $X$(H$_2$O)$<$1.4$\times$10$^{-5}$ in the shocked gas over an area of 13$^{\prime\prime}$. Conclusions: We resolve two distinct gas components associated with the HH 54 shock region at different velocities and excitations. This allows us to constrain the temperature of the H$_2$O emitting gas ($\leq$1000 K) and to derive correct estimates of H$_2$O abundance in the shocked gas, which is lower than what is expected from shock model predictions.
    09/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: As the number of observed brown dwarf outflows is growing it is important to investigate how these outflows compare to the well studied jets from young stellar objects. A key point of comparison is the relationship between outflow and accretion activity and in particular the ratio between the mass outflow and accretion rates ($\dot{M}_{out}$/$\dot{M}_{acc}$). The brown dwarf candidate ISO-ChaI 217 was discovered by our group, as part of a spectro-astrometric study of brown dwarfs, to be driving an asymmetric outflow with the blue-shifted lobe having a position angle of $\sim$ 20$^{\circ}$. The aim here is to further investigate the properties of ISO-ChaI 217, the morphology and kinematics of its outflow, and to better constrain ($\dot{M}_{out}$/$\dot{M}_{acc}$). The outflow is spatially resolved in the $[SII]\lambda \lambda 6716,6731$ lines and is detected out to $\sim$ 1\farcs6 in the blue-shifted lobe and ~ 1" in the red-shifted lobe. The asymmetry between the two lobes is confirmed although the velocity asymmetry is less pronounced with respect to our previous study. Using thirteen different accretion tracers we measure log($\dot{M}_{acc}$) [M$_{sun}$/yr]= -10.6 $\pm$ 0.4. As it was not possible to measure the effect of extinction on the ISO-ChaI 217 outflow $\dot{M}_{out}$ was derived for a range of values of A$_{v}$, up to a value of A$_{v}$ = 2.5 mag estimated for the source extinction. The logarithm of the mass outflow ($\dot{M}_{out}$) was estimated in the range -11.7 to -11.1 for both jets combined. Thus $\dot{M}_{out}$/$\dot{M}_{acc}$ [\Msun/yr] lies below the maximum value predicted by magneto-centrifugal jet launching models. Finally, both model fitting of the Balmer decrements and spectro-astrometric analysis of the H$\alpha$ line show that the bulk of the H I emission comes from the accretion flow.
    Astronomy and Astrophysics 08/2014; · 5.08 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Context: Because it is viewed simply edge-on, the HH212 protostellar system is an ideal laboratory for studying the interplay of infall, outflow, and rotation in the earliest stages of low-mass star formation. Aims: We wish to exploit the unmatched combination of high angular resolution, high sensitivity, high-imaging fidelity, and spectral coverage provided by ALMA to shed light on the complex kinematics of the innermost central regions of HH212. Methods: We mapped the inner 10" (4500 AU) of the HH212 system at about 0.5 arcsec resolution in several molecular tracers and in the 850 $\mu$m dust continuum using the ALMA interferometer in band 7 in the extended configuration of the Early Science Cycle 0 operations. Results: Within a single ALMA spectral set-up, we simultaneously identify all the crucial ingredients known to be involved in the star formation recipe namely: (i) the fast, collimated bipolar SiO jet driven by the protostar, (ii) the large-scale swept-up CO outflow, (iii) the flattened rotating and infalling envelope, with bipolar cavities carved by the outflow (in C$^{17}$O(3--2)), and (iv) a rotating wide-angle flow that fills the cavities and surrounding the axial jet (in C$^{34}$S(7--6)). In addition, the compact high-velocity C$^{17}$O emission ($\pm$ 1.9--3.5 km s$^{-1}$ from systemic) shows a velocity gradient along the equatorial plane consistent with a rotating disk of about 0.2 arcsec = 90 AU around a $\simeq 0.3 \pm 0.1 M_{\rm \odot}$ source. The rotating disk is possibly Keplerian. Conclusions: HH212 is the third Class 0 protostar with possible signatures of a Keplerian disk of radius $\geq 30 AU$. The warped geometry in our CS data suggests that this large keplerian disk might result from misaligned magnetic and rotation axes during the collapse phase. The wide-angle CS flow suggests that disk winds may be present in this source.
    07/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present the study of the H2O spatial distribution at two bright shocked regions along IRAS4A, one of the strongest H2O emitters among the Class 0 outflows. We obtained Herschel-PACS maps of the IRAS4A outflow and HIFI observations of two shocked positions. The largest HIFI beam of 38 arcsec at 557 GHz was mapped in several key water lines with different upper energy levels, to reveal possible spatial variations of the line profiles. We detect four H2O lines and CO (16-15) at the two selected positions. In addition, transitions from related outflow and envelope tracers are detected. Different gas components associated with the shock are identified in the H2O emission. In particular, at the head of the red lobe of the outflow, two distinct gas components with different excitation conditions are distinguished in the HIFI emission maps: a compact component, detected in the ground-state water lines, and a more extended one. Assuming that these two components correspond to two different temperature components observed in previous H2O and CO studies, the excitation analysis of the H2O emission suggests that the compact (about 3 arcsec) component is associated with a hot (T~1000 K) gas with densities ~(1-4)x10^5 cm^{-3}, whereas the extended one (10-17 arcsec) traces a warm (T~300-500 K) and dense gas (~(3-5)x10^7 cm^{-3}). Finally, using the CO (16-15) emission observed at R2, we estimate the H2O/H2 abundance of the warm and hot components to be (7-10)x10^{-7} and (3-7)x10^{-5}. Our data allowed us, for the first time, to resolve spatially the two temperature components previously observed with HIFI and PACS. We propose that the compact hot component may be associated with the jet that impacts the surrounding material, whereas the warm, dense, and extended component originates from the compression of the ambient gas by the propagating flow.
    Astronomy and Astrophysics 06/2014; 568. · 5.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Dense atomic jets from young stars copiously emit in [FeII] IR lines, which can, therefore, be used to trace the immediate environments of embedded protostars. We want to investigate the morphology of the bright [FeII] 1.64um line in the jet of the source HH34 IRS and compare it with the most commonly used optical tracer [SII]. We analyse a 1.64um narrow-band filter image obtained with the Large Binocular Telescope (LBT) LUCI instrument, which covers the HH34 jet and counterjet. A Point Spread Function (PSF) deconvolution algorithm was applied to enhance spatial resolution and make the IR image directly comparable to a [SII] HST image of the same source. The [FeII] emission is detected from both the jet, the (weak) counter-jet, and from the HH34-S and HH34-N bow shocks. The deconvolved image allows us to resolve jet knots close to about 1\arcsec from the central source. The morphology of the [FeII] emission is remarkably similar to that of the [SII] emission, and the relative positions of [FeII] and [SII] peaks are shifted according to proper motion measurements, which were previously derived from HST images. An analysis of the [FeII]/[SII] emission ratio shows that Fe gas abundance is much lower than the solar value with up to 90% of Fe depletion in the inner jet knots. This confirms previous findings on dusty jets, where shocks are not efficient enough to remove refractory species from grains.
    06/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report on the ongoing outburst of the young variable V1180 Cas, which is known to display characteristics in common with EXor eruptive variables. We present results that support the scenario of an accretion-driven nature of the brightness variations of the object and provide the first evidence of jet structures around the source. We monitored the recent flux variations of the target in the Rc, J, H, and K bands. New optical and near-IR spectra taken during the current high state of V1180 Cas are presented, in conjunction with H2 narrow-band imaging of the source. Observed near-IR colour variations are analogous to those observed in EXors and consistent with excess emission originating from an accretion event. The spectra show numerous emission lines, which indicates accretion, ejection of matter, and an active disc. Using optical and near-IR emission features we derive a mass accretion rate of ~3 E-8 Msun/yr, which is an order of magnitude lower than previous estimates. In addition, a mass loss rate of ~4 E-9 and ~4 E-10 Msun/yr are estimated from atomic forbidden lines and H2, respectively. Our H2 imaging reveals two bright knots of emission around the source and the nearby optically invisible star V1180 Cas B, clearly indicative of mass-loss phenomena. Higher resolution observations of the detected jet will help to clarify whether V1180 Cas is the driving source and to determine the relation between the observed knots.
    05/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this paper a comprehensive analysis of VLT / X-Shooter observations of two jet systems, namely ESO-H$\alpha$ 574 a K8 classical T Tauri star and Par-Lup 3-4 a very low mass (0.13~\Msun) M5 star, is presented. Both stars are known to have near-edge on accretion disks. A summary of these first X-shooter observations of jets was given in a 2011 letter. The new results outlined here include flux tables of identified emission lines, information on the morphology, kinematics and physical conditions of both jets and, updated estimates of $\dot{M}_{out}$ / $\dot{M}_{acc}$. Asymmetries in the \eso flow are investigated while the \para jet is much more symmetric. The density, temperature, and therefore origin of the gas traced by the Balmer lines are investigated from the Balmer decrements and results suggest an origin in a jet for \eso while for \para the temperature and density are consistent with an accretion flow. $\dot{M}_{acc}$ is estimated from the luminosity of various accretion tracers. For both targets, new luminosity relationships and a re-evaluation of the effect of reddening and grey extinction (due to the edge-on disks) allows for substantial improvements on previous estimates of $\dot{M}_{acc}$. It is found that log($\dot{M}_{acc}$) = -9.15 $\pm$ 0.45~\Msun yr$^{-1}$ and -9.30 $\pm$ 0.27~\Msun yr$^{-1}$ for \eso and \para respectively. Additionally, the physical conditions in the jets (electron density, electron temperature, and ionisation) are probed using various line ratios and compared with previous determinations from iron lines. The results are combined with the luminosity of the [SII]$\lambda$6731 line to derive $\dot{M}_{out}$ through a calculation of the gas emissivity based on a 5-level atom model.
    03/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this review we focus on the role jets and outflows play in the star and planet formation process. Our essential question can be posed as follows: are jets/outflows merely an epiphenomenon associated with star formation or do they play an important role in mediating the physics of assembling stars both individually and globally? We address this question by reviewing the current state of observations and their key points of contact with theory. Our review of jet/outflow phenomena is organized into three length-scale domains: Source and Disk Scales ($0.1-10^2$ au) where the connection with protostellar and disk evolution theories is paramount; Envelope Scales ($10^2-10^5$ au) where the chemistry and propagation shed further light on the jet launching process, its variability and its impact on the infalling envelope; Parent Cloud Scales ($10^5-10^6$ au) where global momentum injection into cluster/cloud environments become relevant. Issues of feedback are of particular importance on the smallest scales where planet formation regions in a disk may be impacted by the presence of disk winds, irradiation by jet shocks or shielding by the winds. Feedback on envelope scales may determine the final stellar mass (core-to-star efficiency) and envelope dissipation. Feedback also plays an important role on the larger scales with outflows contributing to turbulent support within clusters including alteration of cluster star formation efficiencies (feedback on larger scales currently appears unlikely). A particularly novel dimension of our review is that we consider results on jet dynamics from the emerging field of High Energy Density Laboratory Astrophysics (HEDLA). HEDLA is now providing direct insights into the 3-D dynamics of fully magnetized, hypersonic, radiative outflows.
    02/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present spectrally resolved Herschel/HIFI observations of the young multiple system T Tau in atomic and molecular lines. While CO, H2O, [C II], and SO lines trace the envelope and the outflowing gas up to velocities of 33 km/s with respect to systemic, the CN 5-4 hyperfine structure lines at 566.7, 566.9 GHz show a narrow double-peaked profile centered at systemic velocity, consistent with an origin in the outer region of the compact disk of T Tau N. Disk modeling of the T Tau N disk with the thermo-chemical code ProDiMo produces CN line fluxes and profiles consistent with the observed ones and constrain the size of the gaseous disk (R_out = 110 (+10, -20) AU) and its inclination (i = 25 \pm 5 degree). The model indicates that the CN lines originate in a disk upper layer at 40-110 AU from the star, which is irradiated by the stellar UV field and heated up to temperatures of 50-700 K. With respect to previously observed CN 2-1 millimeter lines, the CN 5-4 lines appear to be less affected by envelope emission, due to their larger critical density and excitation temperature. Hence, high-J CN lines are a unique confusion-free tracer of embedded disks, such as the disk of T Tau N.
    01/2014; 783(2).
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present simulated Large Binocular Telescope (LBT) infrared narrow-band observations of a star-jet system, in conjunction with improved and optimized deconvolution and image reconstruction algorithms, considering two cases of interest: single-dish direct imaging with an AO-assisted camera and imaging through a Fizeau interferometer that combines the beams of the two mirrors of LBT. We aim at understanding what accuracy can be obtained with the use of present AO-assisted large telescopes (such as LBT) and what improvements an interferometric instrument (such as LINC-NIRVANA) will be able to provide. The proposed deconvolution method is based on the target decomposition as a sum of a point source (the star) and an extended source (the jet). By assuming Poisson noise we add to the negative logarithm of the likelihood a regularization term enforcing smoothness of the jet component. Finally, we use a Richardson-Lucy-like method for the minimization of this function. This approach is an improvement of a method proposed by Lucy in 1994 for accurate photometric restoration of HST images and called two channel photometric restoration. We denote the new method as the multi-component Richardson-Lucy (MC-RL) method. The analysis of the reconstructed objects shows that the MC-RL method applied to the interferometric observations allows us to evaluate the width and the spatial intensity profile of the jet down to 20 mas with an accuracy better than about 20% in the best case of a central star fainter than 10 mag. These limits allow us to obtain a very good reconstruction of the jet acceleration region very close to the exciting source, which would provide fundamental scientific information on the jet collimation degree and eventually on its launching mechanism. As concerns the proposed MC-RL method, it demonstrates a good performance in the reconstruction of images with a very high dynamic range. It can be improved in several directions, by increasing both its efficiency, thanks to recently proposed acceleration techniques, and its accuracy by means of more sophisticated regularization terms. We are also planning to apply the method to simulated observations of upcoming super giant earth-based telescopes.
    Publications of the Astronomical Society of the Pacific. 01/2014; 126(936):pp. 180-193.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Molecular outflows powered by young protostars strongly affect the kinematics and chemistry of the natal molecular cloud through strong shocks resulting in substantial modifications of the abundance of several species. As part of the "Chemical Herschel Surveys of Star forming regions" guaranteed time key program, we aim at investigating the physical and chemical conditions of H20 in the brightest shock region B1 of the L1157 molecular outflow. We observed several ortho- and para-H2O transitions using HIFI and PACS instruments on board Herschel, providing a detailed picture of the kinematics and spatial distribution of the gas. We performed a LVG analysis to derive the physical conditions of H2O shocked material, and ultimately obtain its abundance. We detected 13 H2O lines probing a wide range of excitation conditions. PACS maps reveal that H2O traces weak and extended emission associated with the outflow identified also with HIFI in the o-H2O line at 556.9 GHz, and a compact (~10") bright, higher-excitation region. The LVG analysis of H2O lines in the bow-shock show the presence of two gas components with different excitation conditions: a warm (Tkin~200-300 K) and dense (n(H2)~(1-3)x10^6 cm-3) component with an assumed extent of 10" and a compact (~2"-5") and hot, tenuous (Tkin~900-1400 K, n(H2)~10^3-10^4 cm-3) gas component, which is needed to account for the line fluxes of high Eu transitions. The fractional abundance of the warm and hot H2O gas components is estimated to be (0.7-2)x10^{-6} and (1-3)x10^{-4}, respectively. Finally, we identified an additional component in absorption in the HIFI spectra of H2O lines connecting with the ground state level, probably arising from the photodesorption of icy mantles of a water-enriched layer at the edges of the cloud.
    11/2013;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Building on the experience of the high-resolution community with the suite of VLT high-resolution spectrographs, which has been tremendously successful, we outline here the (science) case for a high-fidelity, high-resolution spectrograph with wide wavelength coverage at the E-ELT. Flagship science drivers include: the study of exo-planetary atmospheres with the prospect of the detection of signatures of life on rocky planets; the chemical composition of planetary debris on the surface of white dwarfs; the spectroscopic study of protoplanetary and proto-stellar disks; the extension of Galactic archaeology to the Local Group and beyond; spectroscopic studies of the evolution of galaxies with samples that, unlike now, are no longer restricted to strongly star forming and/or very massive galaxies; the unraveling of the complex roles of stellar and AGN feedback; the study of the chemical signatures imprinted by population III stars on the IGM during the epoch of reionization; the exciting possibility of paradigm-changing contributions to fundamental physics. The requirements of these science cases can be met by a stable instrument with a spectral resolution of R~100,000 and broad, simultaneous spectral coverage extending from 370nm to 2500nm. Most science cases do not require spatially resolved information, and can be pursued in seeing-limited mode, although some of them would benefit by the E-ELT diffraction limited resolution. Some multiplexing would also be beneficial for some of the science cases. (Abridged)
    10/2013;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We investigate the diagnostic capabilities of the iron lines for tracing the physical conditions of the shock-excited gas in jets driven by pre-main sequence stars. We have analyzed the 300-2500 nm X-shooter spectra of two jets driven by the pre-main sequence stars ESO-Halpha 574 and Par-Lup 3-4. Both spectra are very rich in [FeII] lines over the whole spectral range; in addition, lines from [FeIII] are detected in the ESO-H\alpha 574 spectrum. NLTE codes along with codes for the ionization equilibrium are used to derive the gas excitation conditions of electron temperature and density, and fractional ionization. The iron gas-phase abundance is provided by comparing the iron lines emissivity with that of [OI] 630 nm. The [FeII] lines indicate ESO-Halpha 574 jet is, on average, colder (T_e = 9000 K), less dense (n_e = 2 10^4 cm^-3) and more ionized (x_e = 0.7) than the Par-Lup 3-4 jet (T_e = 13000 K, n_e = 6 10^4 cm^-3, x_e < 0.4), even if the existence of a higher density component (n_e = 2 10^5 cm^-3) is probed by the [FeIII] and [FeII] ultra-violet lines. Theoretical models suggest that the shock at work in ESO-Halpha 574 is faster and likely more energetic than the Par-Lup 3-4 shock. This latter feature is confirmed by the high percentage of gas-phase iron measured in ESO-Halpha 574 (50-60% of its solar abundance in comparison with less than 30% in Par-Lup 3-4), which testifies that the ESO-Halpha 574 shock is powerful enough to partially destroy the dust present inside the jet. This work demonstrates that a multiline Fe analysis can be effectively used to probe the excitation and ionization conditions of the gas in a jet without any assumption on ionic abundances. The main limitation on the diagnostics resides in the large uncertainties of the atomic data, which, however, can be overcome through a statistical approach involving many lines.
    The Astrophysical Journal 09/2013; 778(1). · 6.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In the framework of the WISH key program, several H2O (E_u>190 K), high-J CO, [OI], and OH transitions are mapped with PACS in two shock positions along the two prototypical low-luminosity outflows L1448 and L1157. Previous HIFI H2O observations (E_u=53-249 K) and complementary Spitzer mid-IR H2 data are also used, with the aim of deriving a complete picture of the excitation conditions. At all selected spots a close spatial association between H2O, mid-IR H2, and high-J CO emission is found, whereas the low-J CO emission traces either entrained ambient gas or a remnant of an older shock. The excitation analysis at L1448-B2 suggests that a two-component model is needed to reproduce the H2O, CO, and mid-IR H2 lines: an extended warm component (T~450 K) is traced by the H2O emission with E_u =53-137 K and by the CO lines up to J=22-21, and a compact hot component (T=1100 K) is traced by the H2O emission with E_u>190 K and by the higher-J CO lines. At L1448-B2 we obtain an H2O abundance (3-4)x10^{-6} for the warm component and (0.3-1.3)x10^{-5} for the hot component; we also detect OH and blue-shifted [OI] emission, spatially coincident with the other molecular lines and with [FeII] emission. This suggests a dissociative shock for these species, related to the embedded atomic jet. On the other hand, a non-dissociative shock at the point of impact of the jet on the cloud is responsible for the H2O and CO emission. The other examined shock positions show an H2O excitation similar to L1448-B2, but a slightly higher H2O abundance (a factor of 4). The two gas components may represent a gas stratification in the post-shock region. The extended and low-abundance warm component traces the post-shocked gas that has already cooled down to a few hundred Kelvin, whereas the compact and possibly higher-abundance hot component is associated with the gas that is currently undergoing a shock episode.
    Astronomy and Astrophysics 07/2013; · 5.08 Impact Factor

Publication Stats

545 Citations
566.47 Total Impact Points

Institutions

  • 1999–2014
    • The Astronomical Observatory of Brera
      Merate, Lombardy, Italy
  • 2009
    • Harvard-Smithsonian Center for Astrophysics
      • Smithsonian Astrophysical Observatory
      Cambridge, Massachusetts, United States
  • 2005
    • Dublin Institute for Advanced Studies
      Dublin, Leinster, Ireland
  • 2002
    • Cardiff University
      • School of Physics and Astronomy
      Cardiff, WLS, United Kingdom
  • 1997–1999
    • University of Rome Tor Vergata
      Roma, Latium, Italy
  • 1989–1992
    • Università del Salento
      • Department of Mathematics and Physics "Ennio De Giorgi"
      Lecce, Apulia, Italy