Rong-Zhen Xu

Zhejiang University, Hang-hsien, Zhejiang Sheng, China

Are you Rong-Zhen Xu?

Claim your profile

Publications (2)12.3 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Liver cancer is the third leading cause of cancer deaths worldwide but no effective treatment toward liver cancer is available so far. Therefore, there is an unmet medical need to identify novel therapies to efficiently treat liver cancer and improve the prognosis of this disease. Here we report that berbamine (BBM) and one of its derivatives, bbd24, potently suppressed liver cancer cell proliferation and induced cancer cell death by targeting Ca2+/calmodulin-dependent protein kinase II (CAMKII). Furthermore, BBM inhibited the in vivo tumorigenicity of liver cancer cells in NOD/SCID mice, and down-regulated the self-renewal abilities of liver cancer initiating cells. Chemical inhibition or short hairpin RNAs-mediated knockdown of CAMKII recapitulated the effects of BBM, while overexpression of CAMKII promoted cancer cell proliferation and increased the resistance of liver cancer cells to BBM treatments. Western blot analyses of human liver cancer specimens showed that CAMKII was hyperphosphorylated in liver tumors compared with the paired peri-tumor tissues, which supports a role of CAMKII in promoting human liver cancer progression and the potential clinical use of BBM for liver cancer therapies. Our data suggests that BBM and its derivatives are promising agents to suppress liver cancer growth by targeting CAMKII.
    Molecular Cancer Therapeutics 08/2013; · 5.60 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Persistent Jak/Stat3 signal transduction plays a crucial role in tumorigenesis and immune development. Activated Jak/Stat3 signaling has been validated as a promising molecular target for cancer therapeutics discovery and development. Berbamine (BBM), a natural bis-benzylisoquinoline alkaloid, was identified from the traditional Chinese herbal medicine Berberis amurensis used for treatment of cancer patients. While BBM has been shown to have potent antitumor activities with low toxicity in various cancer types, the molecular mechanism of action of BBM remains largely unknown. Here, we determine the antitumor activities of 13 synthetic berbamine derivatives (BBMDs) against human solid tumor cells. BBMD3, which is the most potent in this series of novel BBMDs, exhibits over 6-fold increase in biological activity compared to natural BBM. Moreover, BBMD3, directly inhibits Jak2 autophosphorylation kinase activity in vitro with IC(50)0.69μM. Autophosphorylation of Jak2 kinase at Tyr1007/1008 sites also was strongly inhibited in the range of 15μM of BBMD3 in human melanoma cells at 4h after treatment. Following inhibition of autophosphorylation of Jak2, BBMD3 blocked constitutive activation of downstream Stat3 signaling in melanoma cells. BBMD3 also down-regulated expression of the Stat3 target proteins Mcl-1and Bcl-x(L), associated with induction of apoptosis. In sum, our findings demonstrate that the novel berbamine derivative BBMD3 is an inhibitor of the Jak2/Stat3 signaling pathway, providing evidence for a molecular mechanism whereby BBMD3 exerts at least in part the apoptosis of human melanoma cells. In addition, BBMD3 represents a promising lead compound for development of new therapeutics for cancer treatment.
    Molecular oncology 06/2012; 6(5):484-93. · 6.70 Impact Factor