Fabio A Recchia

Cardiovascular Research Foundation, New York, New York, United States

Are you Fabio A Recchia?

Claim your profile

Publications (111)590.04 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Communication between cardiomyocytes depends upon Gap Junctions (GJ). Previous studies have demonstrated that electrical stimulation induces GJ remodeling and modifies histone acetylases (HAT) and deacetylases (HDAC) activities, although these two results have not been linked. The aim of this work was to establish whether electrical stimulation modulates GJ-mediated cardiac cell-cell communication by acetylation-dependent mechanisms. Field stimulation of HL-1 cardiomyocytes at 0.5Hz for 24hours significantly reduced Connexin43 (Cx43) expression and cell-cell communication. HDAC activity was down-regulated whereas HAT activity was not modified resulting in increased acetylation of Cx43. Consistent with a post-translational mechanism, we did not observe a reduction in Cx43 mRNA in electrically stimulated cells, while the proteasomal inhibitor MG132 maintained Cx43 expression. Further, the treatment of paced cells with the HAT inhibitor Anacardic Acid maintained both the levels of Cx43 and cell-cell communication. Finally, we observed increased acetylation of Cx43 in the left ventricles of dogs subjected to chronic tachypacing as a model of abnormal ventricular activation. In conclusion, our findings suggest that altered electrical activity can regulate cardiomyocyte communication by influencing the acetylation status of Cx43. Copyright © 2015. Published by Elsevier Ltd.
    Journal of Molecular and Cellular Cardiology 08/2015; DOI:10.1016/j.yjmcc.2015.08.001 · 4.66 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Heart failure (HF) continues to be a highly prevalent syndrome, affecting millions of patients and costing billions of dollars in treatment per year in the United States alone. Studies in failing human heart and in transgenic HF models led to the recognition that enhanced neurohormonal signaling plays a causative role in HF progression, and the use of neurohormone receptor antagonists has been proven to decrease hospitalization rates. It has also been long recognized that patients with HF have abnormal water retention, hypo-osmolality, and hyponatremia secondary to elevations in the levels of the neurohormone arginine vasopressin (AVP). AVP is released from the hypothalamus in response to changes in plasma osmolality and pressure, acting at three distinct G protein-coupled receptors: V1AR, V1BR and V2R. Persistent AVP release causes hyponatremia via renal V2R activation, a risk factor for death and hospitalization, and there is a correlation between plasma AVP levels and HF severity/survival of chronic HF patients. Because of the adverse clinical consequences associated with the development of hyponatremia, V2R antagonists were developed for the treatment of HF patients with hyponatremia, however in contrast to other neurohormone blockers they do not relay a survival benefit and may exacerbate decompensated HF requiring inotropic support. Renewed interest in the cardiac V1AR system during HF has arisen due to several recent findings: 1) mice with myocyte-selective transgenic overexpression of cardiac V1AR developed cardiomyopathy in the absence of any pathological insult, 2) cardiac V1AR expression was shown to be increased late-stage human HF, and 3) V1AR antagonism prevented cardiomyopathy development in a mouse model of HF. While cardiac V1AR expression is increased in HF, the role of V1AR signaling in various forms of cardiac injury and in distinct cardiac cell types has been controversial. Therefore this review will primarily focus on V1AR signaling as a potential therapeutic target for HF treatment. Copyright © 2015. Published by Elsevier Inc.
    Cellular Signalling 07/2015; DOI:10.1016/j.cellsig.2015.07.021 · 4.32 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Vascular endothelial growth factor (VEGF)-B activates cytoprotective/antiapoptotic and minimally angiogenic mechanisms via VEGF receptors. Therefore, VEGF-B might be an ideal candidate for the treatment of dilated cardiomyopathy, which displays modest microvascular rarefaction and increased rate of apoptosis. This study evaluated VEGF-B gene therapy in a canine model of tachypacing-induced dilated cardiomyopathy. Chronically instrumented dogs underwent cardiac tachypacing for 28 days. Adeno-associated virus serotype 9 viral vectors carrying VEGF-B167 genes were infused intracoronarily at the beginning of the pacing protocol or during compensated heart failure. Moreover, we tested a novel VEGF-B167 transgene controlled by the atrial natriuretic factor promoter. Compared with control subjects, VEGF-B167 markedly preserved diastolic and contractile function and attenuated ventricular chamber remodeling, halting the progression from compensated to decompensated heart failure. Atrial natriuretic factor-VEGF-B167 expression was low in normally functioning hearts and stimulated by cardiac pacing; it thus functioned as an ideal therapeutic transgene, active only under pathological conditions. Our results, obtained with a standard technique of interventional cardiology in a clinically relevant animal model, support VEGF-B167 gene transfer as an affordable and effective new therapy for nonischemic heart failure. Copyright © 2015 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
    Journal of the American College of Cardiology 07/2015; 66(2):139-153. DOI:10.1016/j.jacc.2015.04.071 · 16.50 Impact Factor

  • Atherosclerosis 07/2015; 241(1):e32. DOI:10.1016/j.atherosclerosis.2015.04.118 · 3.99 Impact Factor
  • David Roul · Fabio A Recchia ·
    [Show abstract] [Hide abstract]
    ABSTRACT: Several authors have proposed a link between altered cardiac energy substrate metabolism and reactive oxygen species (ROS) generation. A cogent evidence of this association has been found in diabetic cardiomyopathy (dCM), however experimental findings in animal models of heart failure and in human myocardium seem to support the coexistence of the two alterations also in heart failure (HF). Two important questions remain open: whether pathological changes in metabolism play an important role in enhancing oxidative stress and whether there is a common pathway linking altered substrate utilization and activation of ROS-generating enzymes, independently of the underlying cardiac pathology. In this regard, the comparison between dCM and HF is intriguing, in that these pathological conditions display very different cardiac metabolic phenotypes. Recent Advances. Our literature review on this topic indicates that a vast body of knowledge is now available documenting the relationship between the metabolism of energy substrates and ROS generation in dCM. In some cases, biochemical mechanisms have been identified. On the other hand, only a few and relatively recent studies have explored this phenomenon in HF and their conclusions are not consistent. Better methods of investigation, especially in vivo, will be necessary to test whether the metabolic fate of certain substrates is causally linked to ROS production. If successful, these studies will put a new emphasis on the potential clinical relevance of metabolic modulators, which might indirectly mitigate cardiac oxidative stress in dCM, HF and possibly in other pathological conditions.
    Antioxidants & Redox Signaling 04/2015; 22(17). DOI:10.1089/ars.2015.6311 · 7.41 Impact Factor

  • Journal of the American College of Cardiology 03/2015; 65(10):A904. DOI:10.1016/S0735-1097(15)60904-4 · 16.50 Impact Factor
  • Fabio A Recchia ·

    Journal of the American College of Cardiology 02/2015; 65(7):698-700. DOI:10.1016/j.jacc.2014.12.024 · 16.50 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Magnetic resonance (MRI) with hyperpolarized 13C-pyruvate is a new technique for the assessment of myocardial metabolism.
    IJC Metabolic and Endocrine 01/2015; 16. DOI:10.1016/j.ijcme.2015.01.007
  • [Show abstract] [Hide abstract]
    ABSTRACT: The β1-adrenergic antagonist metoprolol improves cardiac function in animals and patients with chronic heart failure, isolated mitral regurgitation (MR), and ischemic heart disease, though the molecular mechanisms remain incompletely understood. Metoprolol has been reported to upregulate cardiac expression of β3-adrenergic receptors (β3AR) in animal models. Myocardial β3AR signaling via neuronal nitric oxide synthase (nNOS) activation has recently emerged as a cardioprotective pathway. We tested whether chronic β1-adrenergic blockade with metoprolol enhances myocardial β3AR coupling with nitric oxide-stimulated cyclic guanosine monophosphate (β3AR/NO-cGMP) signaling in the MR-induced, volume-overloaded heart. We compared the expression, distribution, and inducible activation of β3AR/NO-cGMP signaling proteins within myocardial membrane microdomains in dogs (canines) with surgically induced MR, those also treated with metoprolol succinate (MR+βB), and unoperated controls. β3AR mRNA transcripts, normalized to housekeeping gene RPLP1, increased 4.4 × 103- and 3.2 × 102-fold in MR and MR+βB hearts, respectively, compared to Control. Cardiac β3AR expression was increased 1.4- and nearly twofold in MR and MR+βB, respectively, compared to Control. β3AR was detected within caveolae-enriched lipid rafts (Cav3+LR) and heavy density, non-lipid raft membrane (NLR) across all groups. However, in vitro selective β3AR stimulation with BRL37344 (BRL) triggered cGMP production within only NLR of MR+βB. BRL induced Ser 1412 phosphorylation of nNOS within NLR of MR+βB, but not Control or MR, consistent with detection of NLR-specific β3AR/NO-cGMP coupling. Treatment with metoprolol prevented MR-associated oxidation of NO biosensor soluble guanylyl cyclase (sGC) within NLR. Metoprolol therapy also prevented MR-induced relocalization of sGCβ1 subunit away from caveolae, suggesting preserved NO-sGC-cGMP signaling, albeit without coupling to β3AR, within MR+βB caveolae. Chronic β1-blockade is associated with myocardial β3AR/NO-cGMP coupling in a microdomain-specific fashion. Our canine study suggests that microdomain-targeted enhancement of myocardial β3AR/NO-cGMP signaling may explain, in part, β1-adrenergic antagonist-mediated preservation of cardiac function in the volume-overloaded heart.
    Archiv für Kreislaufforschung 01/2015; 110(1):456. DOI:10.1007/s00395-014-0456-3 · 5.41 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Dissolution-dynamic nuclear polarization (dissolution-DNP) for magnetic resonance (MR) spectroscopic imaging has recently emerged as a novel technique for noninvasive studies of the metabolic fate of biomolecules in vivo. Since acetate is the most abundant extra- and intracellular short-chain fatty acid, we focused on [1-13C]acetate as a promising candidate for a chemical probe to study the myocardial metabolism of a beating heart. The dissolution-DNP procedure of Na[1-13C]acetate for in vivo cardiac applications with a 3 T MR scanner was optimized in pigs during bolus injection of doses of up to 3 mmol. The Na[1-13C]acetate formulation was characterized by a liquid-state polarization of 14.2% and a T1Effin vivo of 17.6 ± 1.7 s. In vivo Na[1-13C]acetate kinetics displayed a bimodal shape: [1-13C]acetyl carnitine (AcC) was detected in a slice covering the cardiac volume, and the signal of 13C-acetate and 13C-AcC was modeled using the total area under the curve (AUC) for kinetic analysis. A good correlation was found between the ratio AUC(AcC)/AUC(acetate) and the apparent kinetic constant of metabolic conversion, from [1-13C]acetate to [1-13C]AcC (kAcC), divided by the AcC longitudinal relaxation rate (r1). Our study proved the feasibility and the limitations of administration of large doses of hyperpolarized [1-13C]acetate to study the myocardial conversion of [1-13C]acetate in [1-13C]acetyl-carnitine generated by acetyltransferase in healthy pigs. Copyright © 2014 John Wiley & Sons, Ltd.
    Contrast Media & Molecular Imaging 09/2014; 10(3). DOI:10.1002/cmmi.1618 · 2.92 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nanolithography techniques enable the fabrication of complex nanodevices that can be used for biosensing purposes. However, these devices are normally supported by a substrate and their use is limited to in vitro applications. Following a top-down procedure, we designed and fabricated composite inductance-capacitance (LC) nanoresonators that can be detached from their substrate and dispersed in water. The multimaterial composition of these resonators makes it possible to differentially functionalize different parts of the device to obtain stable aqueous suspensions and multi-sensing capabilities. For the first time, we demonstrate detection of these devices in an aqueous environment, and we show that they can be sensitized to their local environment and to chemical binding of specific molecular moieties. The possibility to optically probe the nanoresonator resonance in liquid dispersions paves the way to a variety of new applications, including injection into living organisms for in vivo sensing and imaging.
    PLoS ONE 08/2014; 9(8):e105474. DOI:10.1371/journal.pone.0105474 · 3.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We recently developed a method to measure mitochondrial proteome dynamics with heavy water ((2)H2O)-based metabolic labeling and high resolution mass spectrometry. We reported the half-lives and synthesis rates of several proteins in the two cardiac mitochondrial subpopulations, subsarcolemmal and interfibrillar (SSM and IFM), in Sprague Dawley rats. In the present study, we tested the hypothesis that the mitochondrial protein synthesis rate is reduced in heart failure, with possible differential changes in SSM versus IFM. Six to seven week old male Sprague Dawley rats underwent transverse aortic constriction (TAC) and developed moderate heart failure after 22weeks. Heart failure and sham rats of the same age received heavy water (5% in drinking water) for up to 80days. Cardiac SSM and IFM were isolated from both groups and the proteins were separated by 1D gel electrophoresis. Heart failure reduced protein content and increased the turnover rate of several proteins involved in fatty acid oxidation, electron transport chain and ATP synthesis, while it decreased the turnover of other proteins, including pyruvate dehydrogenase subunit in IFM, but not in SSM. Because of these bidirectional changes, the average overall half-life of proteins was not altered by heart failure in both SSM and IFM. The kinetic measurements of individual mitochondrial proteins presented in this study may contribute to a better understanding of the mechanisms responsible for mitochondrial alterations in the failing heart.
    Journal of Molecular and Cellular Cardiology 07/2014; 75. DOI:10.1016/j.yjmcc.2014.06.014 · 4.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Imatinib mesylate is a selective tyrosine-kinase inhibitor used in the treatment of multiple cancers, most notably chronic myelogenous leukemia. There is evidence that imatinib can induce cardiotoxicity in cancer patients. Our hypothesis is that imatinib alters calcium regulatory mechanisms and can contribute to development of pathological cardiac hypertrophy. Methods and ResultsNeonatal rat ventricular myocytes (NRVMs) were treated with clinical doses (low: 2 M; high: 5 M) of imatinib and assessed for molecular changes. Imatinib increased peak systolic Ca2+ and Ca2+ transient decay rates and Western analysis revealed significant increases in phosphorylation of phospholamban (Thr-17) and the ryanodine receptor (Ser-2814), signifying activation of calcium/calmodulin-dependent kinase II (CaMKII). Imatinib significantly increased NRVM volume as assessed by Coulter counter, myocyte surface area, and atrial natriuretic peptide abundance seen by Western. Imatinib induced cell death, but did not activate the classical apoptotic program as assessed by caspase-3 cleavage, indicating a necrotic mechanism of death in myocytes. We expressed AdNFATc3-green fluorescent protein in NRVMs and showed imatinib treatment significantly increased nuclear factor of activated T cells translocation that was inhibited by the calcineurin inhibitor FK506 or CaMKII inhibitors. Conclusion These data show that imatinib can activate pathological hypertrophic signaling pathways by altering intracellular Ca2+ dynamics. This is likely a contributing mechanism for the adverse cardiac effects of imatinib.
    Clinical and Translational Science 06/2014; 7(5). DOI:10.1111/cts.12173 · 1.43 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: The gut-derived hormone ghrelin, especially its acylated form, plays a major role in the regulation of systemic metabolism and exerts also relevant cardioprotective effects; hence, it has been proposed for the treatment of heart failure (HF). We tested the hypothesis that ghrelin can directly modulate cardiac energy substrate metabolism. Methods and results: We used chronically instrumented dogs, 8 with pacing-induced HF and 6 normal controls. Human des-acyl ghrelin [1.2 nmol/kg per hour] was infused intravenously for 15 minutes, followed by washout (rebaseline) and infusion of acyl ghrelin at the same dose. (3)H-oleate and (14)C-glucose were coinfused and arterial and coronary sinus blood sampled to measure cardiac free fatty acid and glucose oxidation and lactate uptake. As expected, cardiac substrate metabolism was profoundly altered in HF because baseline oxidation levels of free fatty acids and glucose were, respectively, >70% lower and >160% higher compared with control. Neither des-acyl ghrelin nor acyl ghrelin significantly affected function and metabolism in normal hearts. However, in HF, des-acyl and acyl ghrelin enhanced myocardial oxygen consumption by 10.2±3.5% and 9.9±3.7%, respectively (P<0.05), and cardiac mechanical efficiency was not significantly altered. This was associated, respectively, with a 41.3±6.7% and 32.5±10.9% increase in free fatty acid oxidation and a 31.3±9.2% and 41.4±8.9% decrease in glucose oxidation (all P<0.05). Conclusions: Acute increases in des-acyl or acyl ghrelin do not interfere with cardiac metabolism in normal dogs, whereas they enhance free fatty acid oxidation and reduce glucose oxidation in HF dogs, thus partially correcting metabolic alterations in HF. This novel mechanism might contribute to the cardioprotective effects of ghrelin in HF.
    Circulation Heart Failure 05/2014; 7(4). DOI:10.1161/CIRCHEARTFAILURE.114.001167 · 5.89 Impact Factor
  • Source

    Journal of the American College of Cardiology 04/2014; 63(12):A801. DOI:10.1016/S0735-1097(14)60801-9 · 16.50 Impact Factor
  • Source

    Journal of the American College of Cardiology 04/2014; 63(12):A870. DOI:10.1016/S0735-1097(14)60870-6 · 16.50 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Myocardial hibernation (MH) is a well-known feature of human ischaemic cardiomyopathy (ICM), whereas its presence in human idiopathic dilated cardiomyopathy (DCM) is still controversial. We investigated the histological and molecular features of MH in left ventricle (LV) regions of failing DCM or ICM hearts. We examined failing hearts from DCM (n = 11; 41.9 ± 5.45 years; left ventricle-ejection fraction (LV-EF), 18 ± 3.16%) and ICM patients (n = 12; 58.08 ± 1.7 years; LVEF, 21.5 ± 6.08%) undergoing cardiac transplantation, and normal donor hearts (N, n = 8). LV inter-ventricular septum (IVS) and antero-lateral free wall (FW) were transmurally (i.e. sub-epicardial, mesocardial and sub-endocardial layers) analysed. LV glycogen content was shown to be increased in both DCM and ICM as compared with N hearts (P < 0.001), with a U-shaped transmural distribution (lower values in mesocardium). Capillary density was homogenously reduced in both DCM and ICM as compared with N (P < 0.05 versus N), with a lower decrease independent of the extent of fibrosis in sub-endocardial and sub-epicardial layers of DCM as compared with ICM. HIF1-α and nestin, recognized ischaemic molecular hallmarks, were similarly expressed in DCM-LV and ICM-LV myocardium. The proteomic profile was overlapping by ~50% in DCM and ICM groups. Morphological and molecular features of MH were detected in end-stage ICM as well as in end-stage DCM LV, despite epicardial coronary artery patency and lower fibrosis in DCM hearts. Unravelling the presence of MH in the absence of coronary stenosis may be helpful to design a novel approach in the clinical management of DCM.
    Journal of Cellular and Molecular Medicine 01/2014; 18(3). DOI:10.1111/jcmm.12198 · 4.01 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In vitro studies suggested that glucose metabolism through the oxidative pentose phosphate pathway (oxPPP) can paradoxically feed superoxide-generating enzymes in failing hearts. We therefore tested the hypothesis that acute inhibition of the oxPPP reduces oxidative stress and enhances function and metabolism of the failing heart, in vivo. In 10 chronically instrumented dogs, congestive heart failure (HF) was induced by high-frequency cardiac pacing. Myocardial glucose consumption was enhanced by raising arterial glycemia to levels mimicking post-prandial peaks, before and after intravenous administration of the oxPPP inhibitor 6-aminonicotinamide (80 mg/kg). Myocardial energy substrate metabolism was measured with radiolabeled glucose and oleic acid, and cardiac 8-isoprostane output was used as an index of oxidative stress. A group of 5 chronically instrumented, normal dogs served as control. In HF, raising glycemic levels from ~80 to ~170 mg/dL increased cardiac isoprostane output by approximately 2-fold, while oxPPP inhibition normalized oxidative stress and enhanced cardiac oxygen consumption, glucose oxidation and stroke work. In normal hearts glucose infusion did not induce significant changes in cardiac oxidative stress. Myocardial tissue concentration of 6P-gluconate, an intermediate metabolite of the oxPPP, was significantly reduced by approximately 50% in treated vs non-treated failing hearts, supporting the inhibitory effect of 6-aminonicotinamide. Our study indicates an important contribution of the oxPPP activity to cardiac oxidative stress in HF, which is particularly pronounced during common physiological changes such as post-prandial glycemic peaks.
    AJP Heart and Circulatory Physiology 01/2014; 306(5). DOI:10.1152/ajpheart.00783.2013 · 3.84 Impact Factor
  • Source

    Journal of the American College of Cardiology 10/2013; 62(18). DOI:10.1016/j.jacc.2013.08.1575 · 16.50 Impact Factor
  • Source

    Journal of the American College of Cardiology 10/2013; 62(18). DOI:10.1016/j.jacc.2013.08.1570 · 16.50 Impact Factor

Publication Stats

3k Citations
590.04 Total Impact Points


  • 2015
    • Cardiovascular Research Foundation
      New York, New York, United States
  • 2012-2015
    • Temple University
      • Department of Physiology
      Filadelfia, Pennsylvania, United States
  • 2005-2015
    • Scuola Superiore Sant'Anna
      • Institute of Life Sciences
      Pisa, Tuscany, Italy
  • 2013
    • Fondazione Toscana Gabriele Monasterio
      Pisa, Tuscany, Italy
  • 2005-2012
    • Scuola Normale Superiore di Pisa
      • Laboratory of Molecular Biology
      Pisa, Tuscany, Italy
  • 1999-2012
    • New York Medical College
      • • Department of Physiology
      • • Department of Pediatrics
      New York City, New York, United States
  • 2008
    • INO - Istituto Nazionale di Ottica
      Florens, Tuscany, Italy