M. Yu. Lavrentiev

Culham Centre for Fusion Energy, Abingdon-on-Thames, England, United Kingdom

Are you M. Yu. Lavrentiev?

Claim your profile

Publications (46)114.93 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The phase stability of fcc and bcc magnetic binary Fe-Cr, Fe-Ni, and Cr-Ni alloys, and ternary Fe-Cr-Ni alloys is investigated using a combination of density functional theory (DFT), cluster expansion (CE), and magnetic cluster expansion (MCE) approaches. Energies, magnetic moments, and volumes of more than 500 alloy structures have been evaluated using DFT, and the predicted most stable configurations are compared with experimental observations. Deviations from the Vegard law in fcc Fe-Cr-Ni alloys, resulting from the nonlinear variation of atomic magnetic moments as functions of alloy composition, are observed. The accuracy of the CE model is assessed against the DFT data, where for ternary Fe-Cr-Ni alloys the cross-validation error is found to be less than 12 meV/atom. A set of cluster interaction parameters is defined for each alloy, where it is used for predicting new ordered alloy structures. The fcc Fe2CrNi phase with Cu2NiZn-like crystal structure is predicted to be the global ground state of ternary Fe-Cr-Ni alloys, with the lowest chemical ordering temperature of 650 K. DFT-based MonteCarlo (MC) simulations are applied to the investigation of order-disorder transitions in Fe-Cr-Ni alloys. The enthalpies of formation of ternary alloys predicted by MC simulations at 1600 K, combined with magnetic correction derived from MCE, are in excellent agreement with experimental values measured at 1565 K. The relative stability of fcc and bcc phases is assessed by comparing the free energies of alloy formation. The evaluation of the free energies involved the application of a dedicated algorithm for computing the configurational entropies of the alloys. Chemical order is analyzed, as a function of temperature and composition, in terms of the Warren-Cowley short-range order (SRO) parameters and effective chemical pairwise interactions. In addition to compositions close to binary intermetallic phases CrNi2, FeNi, FeNi3, and FeNi8, pronounced chemical order is found in fcc alloys near the center of the ternary alloy composition triangle. The calculated SRO parameters compare favorably with experimental data on binary and ternary alloys. Finite temperature magnetic properties of fcc Fe-Cr-Ni alloys are investigated using an MCE Hamiltonian parameterized using a DFT database of energies and magnetic moments computed for a large number of alloy configurations. MCE simulations show that the ordered ternary Fe2CrNi alloy phase remains magnetic up to 850–900 K due to the strong antiferromagnetic coupling between (Fe,Ni) and Cr atoms in the ternary Fe-Cr-Ni matrix.
    Physical Review B 01/2015; 91(2):024108. · 3.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The phase stability of fcc and bcc magnetic binary Fe-Cr, Fe-Ni, Cr-Ni alloys and ternary Fe-Cr-Ni alloys is investigated using a combination of density functional theory (DFT), Cluster Expansion (CE) and Magnetic Cluster Expansion (MCE). Energies, magnetic moments, and volumes of more than 500 alloy structures are evaluated using DFT, and the most stable magnetic configurations are compared with experimental data. Deviations from the Vegard law in fcc Fe-Cr-Ni alloys, associated with non-linear variation of atomic magnetic moments as functions of alloy composition, are observed. Accuracy of the CE model is assessed against the DFT data, where for ternary alloys the cross-validation error is smaller than 12 meV/atom. A set of cluster interaction parameters is defined for each alloy, where it is used for predicting new ordered alloy structures. Fcc Fe2CrNi phase with Cu2NiZn-like structure is predicted as the global ground state with the lowest chemical ordering temperature of 650K. DFT-based Monte Carlo (MC) simulations are used for assessing finite temperature fcc-bcc phase stability and order-disorder transitions in Fe-Cr-Ni alloys. Enthalpies of formation of ternary alloys calculated from MC simulations at 1600K combined with magnetic correction derived from MCE are in excellent agreement with experimental values measured at 1565K. Chemical order is analysed, as a function of temperature and composition, in terms of the Warren-Cowley short-range order (SRO) parameters and effective chemical pairwise interactions. In addition to compositions close to the known binary intermetallic phases like CrNi2, FeNi, FeNi3 and FeNi8, pronounced chemical order is found in fcc alloys near the centre of the ternary alloy composition triangle. The SRO parameter characterizing pairs of Fe and Ni atoms decreases as a function of Cr concentration. The calculated SRO parameters are compared to the available experimental data on binary and ternary alloys, and good agreement is found. Finite temperature magnetic properties of fcc Fe-Cr-Ni alloys are investigated using an MCE Hamiltonian constructed using a DFT database of energies and magnetic moments. MCE simulations show that ordered ternary Fe2CrNi alloy phase remains magnetic up to fairly high temperatures due to anti-ferromagnetic coupling between (Fe,Ni) and Cr atoms in the ternary Fe-Cr-Ni matrix.
    10/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A model lattice ab initio parameterised Hamiltonian spanning a broad range of alloy compositions and a large variety of chemical and magnetic configurations has been developed for face-centered cubic Fe-Ni alloys. Thermodynamic and magnetic properties of the alloys are explored using configuration and magnetic Monte Carlo simulations in a temperature range extending well over 1000 K.
    Physical Chemistry Chemical Physics 04/2014; · 4.20 Impact Factor
  • Source
    D. Nguyen-Manh, Pui-Wai Ma, M. Yu. Lavrentiev, S. L. Dudarev
    [Show abstract] [Hide abstract]
    ABSTRACT: The development of quantitative models for radiation damage effects in iron, iron alloys and steels, particularly for the high temperature properties of the alloys, requires understanding of magnetic interactions, which control the phase stability of ferritic-martensitic, ferritic, and austenitic steels. In this work, disordered magnetic configurations of pure iron and Fe-Cr alloys are investigated using Density Functional Theory (DFT) formalism, in the form of constrained non-collinear magnetic calculations, with the objective of creating a database of atomic magnetic moments and forces acting between the atoms. From a given disordered atomic configuration of either pure Fe or Fe-Cr alloy, a penalty contribution to the usual spin-polarized DFT total energy has been calculated by constraining the magnitude and direction of magnetic moments. An extensive database of non-collinear magnetic moment and force components for various atomic configurations has been generated and used for interpolating the spatially-dependent magnetic interaction parameters, for applications in large-scale spin-lattice dynamics and magnetic Monte-Carlo simulations.
    Annals of Nuclear Energy 09/2013; 77. · 1.02 Impact Factor
  • Source
    M. Yu. Lavrentiev, D. Nguyen-Manh, J. Wrobel, S. L. Dudarev
    [Show abstract] [Hide abstract]
    ABSTRACT: We develop a Magnetic Cluster Expansion (MCE) model for binary bcc and fcc Fe-Cr alloys, as well as for fcc Fe-Ni alloys, and apply it to the investigation of magnetic properties of these alloys over a broad interval of concentrations, and over a broad interval of temperatures extending well over 1000 K. We show how an MCE-based Monte Carlo study describes the magnetic properties of these alloys, for example the composition and microstructure dependence of the Curie temperature, the non-collinearity of magnetic structures found in bcc Fe-Cr alloys, phase transitions between bcc and fcc in Fe-Cr, and the enthalpy of mixing of Fe-Ni alloys. The results of simulations are in excellent agreement with experimental observations.
    09/2013;
  • Source
    D. Nguyen-Manh, M. Yu. Lavrentiev, M. Muzyk, S. L. Dudarev
    Journal of Materials Science 11/2012; 47(21):7385-7398. · 2.31 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present a combined experimental and computational study of high temperature magnetic properties of Fe-Cr alloys with chromium content up to about 20 at.%. The magnetic cluster expansion method is applied to model the magnetic properties of random Fe-Cr alloys, and in particular the Curie transition temperature, as a function of alloy composition. We find that at low (3-6 at.%) Cr content the Curie temperature increases with the increase of Cr concentration. It is maximum at approximately 6 at.% Cr and then decreases for higher Cr content. The same feature is found in thermo-magnetic measurements performed on model Fe-Cr alloys, where a 5 at.% Cr alloy has a higher Curie temperature than pure Fe. The Curie temperatures of 10 and 15 at.% Cr alloys are found to be lower than the Curie temperature of pure Fe.
    Journal of Physics Condensed Matter 07/2012; 24(32):326001, 1-5. · 2.22 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Noncollinear configurations of local magnetic moments at Fe/Cr interfaces in Fe-Cr alloys are explored using a combination of density functional theory (DFT) and magnetic cluster expansion (MCE) simulations. We show that magnetic frustration at Fe/Cr interfaces can be partially resolved through the formation of noncollinear magnetic structures, which occur not only at stepped but also at smooth interfaces, for example at the (110) interface where magnetic noncollinearity predicted by simulations is observed experimentally. Both DFT and MCE simulations predict that the magnetically frustrated (110) interface has the highest formation energy in the low-temperature limit. Using MCE and kinetic Monte Carlo simulations, we investigate the effect of temperature on magnetic order at interfaces and on interface energies. We find that while the low-temperature noncollinear bulk magnetic configurations of Cr remain stable up to the Néel temperature, the chromium atomic layers close to the interfaces retain their magnetic order well above this temperature. We also show that above the Curie temperature the (110) interface is the lowest energy interface, in agreement with DFT simulations of interfaces separating ferromagnetic Fe and nonmagnetic Cr.
    Physical review. B, Condensed matter 10/2011; 84(14). · 3.66 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Atomistic kinetic Monte Carlo (AKMC) simulations were performed to study α–α′ phase separation in Fe–Cr alloys. Two different energy models and two approaches to estimate the local vacancy migration barriers were used. The energy models considered are a two-band model Fe–Cr potential and a cluster expansion, both fitted to ab initio data. The classical Kang–Weinberg decomposition, based on the total energy change of the system, and an Artificial Neural Network (ANN), employed as a regression tool were used to predict the local vacancy migration barriers ‘on the fly’. The results are compared with experimental thermal annealing data and differences between the applied AKMC approaches are discussed. The ability of the ANN regression method to accurately predict migration barriers not present in the training list is also addressed by performing cross-check calculations using the nudged elastic band method.
    Journal of Nuclear Materials 10/2011; 417(1):1086-1089. · 2.02 Impact Factor
  • Mikhail Yu. Lavrentiev, Duc Nguyen Manh, Sergei L. Dudarev
    [Show abstract] [Hide abstract]
    ABSTRACT: Magnetic Cluster Expansion method is applied to the investigation of magnetic properties of Fe-Cr alloys treated as a function of Cr content, the spatial distribution of Cr atoms, and temperature. Random Fe-Cr alloys and Cr clusters formed in concentrated alloys are analyzed. We find significant differences between the types of magnetic order characterizing those systems, which are reflected in the characteristic variation of the temperature-dependent magnetic specific heat. Simulations show that in random Fe-Cr alloys and in alloys containing Cr clusters, the interplay between antiferromagnetic interactions characterizing Fe-Cr and Cr-Cr atom pairs gives rise to unusual patterns of finite temperature magnetic ordering.
    Solid State Phenomena 06/2011; 172-174:1002-1007.
  • Source
    M. Yu. Lavrentiev, S. L. Dudarev, D. Nguyen-Manh
    [Show abstract] [Hide abstract]
    ABSTRACT: Magnetic cluster expansion model is developed for bcc Fe–Cr alloys, and applied to the investigation of magnetic properties of these alloys over a broad interval of concentrations ranging from pure Fe to pure Cr, and over a broad interval of temperatures extending well over 1000 K. Finite-temperature configurations simulated using the magnetic cluster expansion Hamiltonian describe various magnetically ordered ferromagnetic and antiferromagnetic phases, partially magnetically ordered phases, and transitions between them and paramagnetic phases. We investigate the dependence of the Curie and Néel transition temperatures on the composition of the alloy. Analysis of the magnetic specific heat treated as a function of Cr concentration shows that in the low Cr concentration limit the Curie temperature increases as a function of Cr content. We find that for alloys containing high level of Cr the Curie temperature depends sensitively on the degree of Cr precipitation, varying by as much as 150 K between random alloy configurations and configurations containing Cr precipitates.
    Journal of Applied Physics 03/2011; 109(7):07E123-07E123-3. · 2.19 Impact Factor
  • M. Yu. Lavrentiev, D. Nguyen-Manh, S. L. Dudarev
    [Show abstract] [Hide abstract]
    ABSTRACT: We compare two approaches to modelling the phase stability of iron and Fe–Cr binary alloys: Cluster expansion and magnetic cluster expansion. The first, based on a cluster expansion Hamiltonian, describes the effects of configurational disorder in an alloy on its thermodynamic properties. Cluster expansion can be used for studying alloys by both equilibrium and kinetic Monte Carlo methods. The second, recently proposed, “magnetic” cluster expansion (MCE) method extends cluster expansion treatment to magnetic degrees of freedom by including magnetic moments of individual atoms as variables. MCE has a unique capability for modelling the properties of a magnetic alloy in a broad range of compositions ranging from pure ferromagnetic Fe to antiferromagnetic Cr. We describe applications of both methods to modelling various properties of candidate fusion materials.
    Computational Materials Science 10/2010; 49(4). · 1.88 Impact Factor
  • Source
    M. Yu. Lavrentiev, D. Nguyen-Manh, S. L. Dudarev
    [Show abstract] [Hide abstract]
    ABSTRACT: An ab initio-based magnetic-cluster-expansion treatment developed for body- and face-centered cubic phases of iron and iron-chromium alloys is applied to modeling the α-γ and γ-δ phase transitions in these materials. The Curie, Néel, and the structural phase-transition temperatures predicted by the model are in good agreement with experimental observations, indicating that it is the thermal excitation of magnetic and phonon degrees of freedom that stabilizes the fcc γ phase. The model also describes the occurrence of the γ loop in the phase diagram of Fe-Cr alloys for a realistic interval of temperatures and Cr concentrations.
    Physical Review B 05/2010; 81(18). · 3.66 Impact Factor
  • Source
    D. Nguyen-Manh, M.Yu. Lavrentiev, S.L. Dudarev
    [Show abstract] [Hide abstract]
    ABSTRACT: An integrated ab initio and statistical Monte Carlo investigation has been recently carried out to model the thermodynamic and kinetic properties of Fe–Cr alloys. We found that the conventional Fe–Cr phase diagram is not adequate at low temperature region where the magnetic contribution to the free energy plays an important role in the prediction of an ordered Fe15Cr phase and its negative enthalpy of formation. The origin of the anomalous thermodynamic and magnetic properties of Fe–Cr alloys can be understood using a tight-binding Stoner model combined with the charge neutrality condition. We investigate the environmental dependence of magnetic moment distributions for various self-interstitial atom dumbbells configurations using spin density maps found using density functional theory calculations. The mixed dumbbell Fe–Cr and Fe–Mn binding energies are found to be positive due to magnetic interactions. Finally, we discuss the relationship between the migration energy of vacancy in Fe–Cr alloys and magnetism at the saddle point configuration.
    Journal of Nuclear Materials 04/2009; · 2.02 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The EU fusion materials modelling programme was initiated in 2002 with the objective of developing a comprehensive set of computer modelling techniques and approaches, aimed at rationalising the extensive available experimental information on properties of irradiated fusion materials, developing capabilities for predicting the behaviour of materials under conditions not yet accessible to experimental tests, assessing results of tests involving high dose rates, and extrapolating these results to the fusion-relevant conditions. The programme presently gives emphasis to modelling a single class of materials, which are ferritic-martensitic EUROFER-type steels, and focuses on the investigation of key physical phenomena and interpretation of experimental observations. The objective of the programme is the development of computational capabilities for predicting changes in mechanical properties, hardening and embrittlement, as well as changes in the microstructure and phase stability of EUROFER and FeCr model alloys occurring under fusion reactor relevant irradiation conditions.
    Journal of Nuclear Materials 04/2009; · 2.02 Impact Factor
  • Source
    M.Yu. Lavrentiev, S.L. Dudarev, D. Nguyen-Manh
    [Show abstract] [Hide abstract]
    ABSTRACT: We present a new method for simulating magnetic alloys characterized by configurational disorder, the magnetic cluster expansion. Each atom in an alloy is assigned a discrete variable denoting the atomic species, and the (continuous) magnetic moment. The parameters of the model are determined by matching energies and magnetic moments of atoms found in trial simulations to DFT calculations. Monte Carlo simulations are then performed to investigate magnetic properties of pure iron, and magnetic and structural properties of FeCr alloys. We found that the Curie temperature of the ordered FeCr alloy with small concentration of Cr (Fe15Cr) increases in comparison with pure Fe and the random mixture of Cr in iron (Fe-6.25% Cr). The method is also applied to the investigation of the correlation functions for the directions of magnetic moments at elevated temperatures.
    Journal of Nuclear Materials 04/2009; · 2.02 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this work the capability of existing cohesive models to predict the thermodynamic properties of Fe–Cr alloys are critically evaluated and compared. The two-band model and the concentration-dependent model, which are independently developed extensions of the embedded-atom method, are demonstrated to be equivalent and equally capable of reproducing the thermodynamic properties of Fe–Cr alloys. The existing potentials fitted with these formalisms are discussed and compared with an existing cluster expansion model. The phase diagram corresponding to these models is evaluated using different but complementary methods. The influence of mixing enthalpy, low-energy states and vibrational entropy on the phase diagram is examined for the different cohesive models.
    Journal of Nuclear Materials 03/2009; · 2.02 Impact Factor
  • D. Nguyen-Manh, M. Yu. Lavrentiev, S. L. Dudarev
    [Show abstract] [Hide abstract]
    ABSTRACT: A multi-scale modeling approach is presented to investigate the phase stability and clustering in Fe–Cr alloys by combining density functional theory (DFT) calculations with statistical approaches involving cluster expansion (CE) and Monte Carlo (MC) simulations. This makes it possible to generate, in a systematic way, the low-energy configurations required for the subsequent DFT study of intrinsic defects (vacancies, interstitials) and impurity-defect interactions in the entire range of Fe–Cr alloy compositions under irradiation. The lowest mixing enthalpy configuration generated by MC simulation is found at Cr concentration of 6.25% that is consistent with the ab initio prediction of an intermetallic compound Fe15Cr characterized by the negative heat of formation. The ordering structureFe15Cris stabilized by lowest down-spin density of states value at the Fermi energy, showing Cr atom with a strong local magnetic moment aligned in one anti-ferromagnetic direction with the Fe atoms. Furthermore, it is shown that magnetism is responsible for anomalous nano-segregation of the α′-Cr phase into various clustered configurations that are confirmed by a large scale kinetic Monte Carlo simulations. The impurity-interstitial defect interaction is investigated and we found that the binding energies of mixed dumbbell Fe–Cr in Fe15Cr alloy are positive at variance with predictions made by elastic theory. Using the Stoner model within a tight-binding mean field approximation we are able to explain the origin of anomalous enthalpy of mixing as well as the complex correlation between magnetic moment distribution and phase stability in the Fe–Cr system.
    Computational Materials Science 11/2008; 44(1):1-8. · 1.88 Impact Factor
  • Duc Nguyen-Manh, M. Yu. Lavrentiev, Sergei L. Dudarev
    [Show abstract] [Hide abstract]
    ABSTRACT: To understand the behaviour of irradiated defects and kinetic pathways of micro-structural evolution in Fe–Cr alloys, we use a combination of density functional theory with statistical approaches involving cluster expansions and Monte Carlo simulations. A lowest negative mixing enthalpy is found at 6.25% Cr that is consistent with our DFT prediction of an ordered Fe15Cr structure. At 50% Cr, it is found that the predicted enthalpy of formation is 4 times smaller than that calculated by the CPA approach. Thermodynamic and precipitation properties are then discussed in term of segregation between the Fe15Cr and α′-Cr phases and of vacancy-mediated kMC simulation. To cite this article: D. Nguyen-Manh et al., C. R. Physique 9 (2008).
    Comptes Rendus Physique 04/2008; 9(3):379-388. · 1.64 Impact Factor
  • Source
    D. Nguyen-Manh, M. Yu. Lavrentiev, S. L. Dudarev
    [Show abstract] [Hide abstract]
    ABSTRACT: To understand the behaviour of point defects generated in irradiated FeCr ferritic/martensitic steels and to identify the kinetic pathways of micro-structural evolution of binary model Fe–Cr alloys, we use a combination of density functional theory (DFT) with statistical approaches involving cluster expansion and Monte Carlo simulations. This makes it possible to generate in a systematic way the low-energy configurations required for the subsequent DFT study of intrinsic defects (vacancies, interstitials) and impurity-defect interactions over the entire range of Fe–Cr alloy compositions. In the limit of low Cr concentration, DFT calculations predict that an intermetallic compound Fe15Cr has the lowest negative heat of formation. At higher Cr concentrations, simulations performed using a 4×4×4 super-cell show that magnetism is responsible for the nano-segregation of the ferromagnetic Fe15Cr and anti-ferromagnetic (α′-Cr) phases giving rise to the formation of clusters characterised by a very low positive heat of formation. We perform a systematic investigation of formation energies of point defects and their energies of interaction with Cr atoms. Further investigation of interaction of interstitial and vacancy defects with impurities (V, Nb, Ta, Mo, W, Al, Si, P, S) also shows a complex picture of interplay between magnetism and short-range ordering that affects the interaction between defects and impurities in the presence of chromium in Fe-rich alloys.
    Journal of Computer-Aided Materials Design 12/2007; 14:159-169. · 1.30 Impact Factor

Publication Stats

480 Citations
114.93 Total Impact Points

Institutions

  • 2011–2012
    • Culham Centre for Fusion Energy
      Abingdon-on-Thames, England, United Kingdom
  • 2006
    • VU University Amsterdam
      • Faculty of Earth and Life Sciences
      Amsterdamo, North Holland, Netherlands
  • 2001–2006
    • University of Bristol
      • School of Chemistry
      Bristol, ENG, United Kingdom
  • 2005
    • University College London
      • Department of Physics and Astronomy
      London, ENG, United Kingdom
  • 2003
    • Novosibirsk Institute of Organic Chemistry
      Novo-Nikolaevsk, Novosibirsk, Russia