Are you Miroslava Dobrotová?

Claim your profile

Publications (1)0.51 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: The fact that leukaemic cells are primarily or secondarily resistant to cytostatics is a serious phenomenon, which leads to the failure of chemotherapy of malignant diseases in clinical practise. Some detoxification and transporting systems are responsible for the generation of chemoresistance on the cellular level and the decrease of effectiveness in treatment. In vitro testing of chemoresistance of leukaemic cells is presently an inseparable component of “tailoring” therapy in the developing field of predictive oncology. The aim of this work was to estimate profiles of drug resistance, based on the predictive in vitro test, and to help in choosing the most effective cytostatic. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazoline (MTT) assay was used, based on the direct effect of cytostatics on the viability of leukaemic cells in vitro. The number of living leukaemic cells was evaluated by a computer program, where LC50 (concentration of cytostatics lethal to 50% of leukaemic cells) was established from the achieved dose-relation curves. Seventy-one samples of leukaemic cells isolated from the patients’ peripheral blood or bone marrow were examined. All samples were tested to 3 cytostatics minimally. It was found by the in vitro assay, that resistance to dexamethasone, prednisolone, etoposide and vincristine is increased in patients with acute myeloid leukaemia disease, compared to the acute lymphoblastic leukaemia patients. In patients with a relapsed disease population, leukaemic cells are highly heterogeneous in the MTT assay. It was concluded that the MTT assay can be used to study drug interactions in vitro in leukaemia samples. The type of interaction was highly different between patients, and depended on drug concentrations.
    Biologia 01/2009; 64(1):203-207. · 0.51 Impact Factor