L. Dunne

University of Canterbury, Christchurch, Canterbury, New Zealand

Are you L. Dunne?

Claim your profile

Publications (223)717.85 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We examine the relationship between star formation and AGN activity by constructing matched samples of local ($0<z<0.6$) radio-loud and radio-quiet AGN in the $\textit{Herschel}$-ATLAS fields. Radio-loud AGN are classified as high-excitation and low-excitation radio galaxies (HERGs, LERGs) using their emission lines and $\textit{WISE}$ 22-$\mu$m luminosity. AGN accretion and jet powers in these active galaxies are traced by [OIII] emission-line and radio luminosity, respectively. Star formation rates (SFRs) and specific star formation rates (SSFRs) were derived using $\textit{Herschel}$ 250-$\mu$m luminosity and stellar mass measurements from the SDSS$-$MPA-JHU catalogue. In the past, star formation studies of AGN have mostly focused on high-redshift sources to observe the thermal dust emission that peaks in the far-infrared, which limited the samples to powerful objects. However, with $\textit{Herschel}$ we can expand this to low redshifts. Our stacking analyses show that SFRs and SSFRs of both radio-loud and radio-quiet AGN increase with increasing AGN power but that radio-loud AGN tend to have lower SFR. Additionally, radio-quiet AGN are found to have approximately an order of magnitude higher SSFRs than radio-loud AGN for a given level of AGN power. The difference between the star formation properties of radio-loud and -quiet AGN is also seen in samples matched in stellar mass.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Galaxy And Mass Assembly (GAMA) survey is one of the largest contemporary spectroscopic surveys of low-redshift galaxies. Covering an area of ~286 deg^2 (split among five survey regions) down to a limiting magnitude of r < 19.8 mag, we have collected spectra and reliable redshifts for 238,000 objects using the AAOmega spectrograph on the Anglo-Australian Telescope. In addition, we have assembled imaging data from a number of independent surveys in order to generate photometry spanning the wavelength range 1 nm - 1 m. Here we report on the recently completed spectroscopic survey and present a series of diagnostics to assess its final state and the quality of the redshift data. We also describe a number of survey aspects and procedures, or updates thereof, including changes to the input catalogue, redshifting and re-redshifting, and the derivation of ultraviolet, optical and near-infrared photometry. Finally, we present the second public release of GAMA data. In this release we provide input catalogue and targeting information, spectra, redshifts, ultraviolet, optical and near-infrared photometry, single-component S\'ersic fits, stellar masses, H$\alpha$-derived star formation rates, environment information, and group properties for all galaxies with r < 19.0 mag in two of our survey regions, and for all galaxies with r < 19.4 mag in a third region (72,225 objects in total). The database serving these data is available at http://www.gama-survey.org/.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Using results from the Herschel Astrophysical Terrahertz Large-Area Survey and the Galaxy and Mass Assembly project, we show that, for galaxy masses above approximately 1.0e8 solar masses, 51% of the stellar mass-density in the local Universe is in early-type galaxies (ETGs: Sersic n > 2.5) while 89% of the rate of production of stellar mass-density is occurring in late-type galaxies (LTGs: Sersic n < 2.5). From this zero-redshift benchmark, we have used a calorimetric technique to quantify the importance of the morphological transformation of galaxies over the history of the Universe. The extragalactic background radiation contains all the energy generated by nuclear fusion in stars since the Big Bang. By resolving this background radiation into individual galaxies using the deepest far-infrared survey with the Herschel Space Observatory and a deep near-infrared/optical survey with the Hubble Space Telescope (HST), and using measurements of the Sersic index of these galaxies derived from the HST images, we estimate that approximately 83% of the stellar mass-density formed over the history of the Universe occurred in LTGs. The difference between this and the fraction of the stellar mass-density that is in LTGs today implies there must have been a major transformation of LTGs into ETGs after the formation of most of the stars.
  • [Show abstract] [Hide abstract]
    ABSTRACT: We exploit long baseline ALMA submillimeter observations of the lensed star-forming galaxy SDP 81 at z = 3.042 to investigate the properties of the interstellar medium (ISM) on scales of 50-100 pc. The kinematics of the 12CO gas within this system are well described by a rotationally supported disk with an inclination-corrected rotation speed, = 320 ± 20 km s−1, and a dynamical mass of = (3.5 ± 1.0)× 1010 within a radius of 1.5 kpc. The disk is gas-rich and unstable, with a Toomre parameter, Q = 0.30 ± 0.10, and so into star-forming regions with Jeans length 130 pc. We identify five star-forming regions within the ISM on these scales and show that their scaling relations between luminosity, line widths, and sizes are significantly offset from those typical of molecular clouds in local galaxies (Larson's relations). These offsets are likely to be caused by the high external hydrostatic pressure for the ISM, /× 107 K cm−3, which is ~104× higher than the typical ISM pressure in the Milky Way. The physical conditions of the star-forming ISM and giant molecular clouds appear to be similar to those found in the densest environments in the local universe, such as those in the Galactic center.
    06/2015; 806(1):L17. DOI:10.1088/2041-8205/806/1/L17
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Herschel Space Observatory has had a tremendous impact on the study of extragalactic dust. Specifically, early-type galaxies (ETG) have been the focus of several studies. In this paper we combine results from two Herschel studies - a Virgo cluster study HeViCS and a broader, low-redshift H-ATLAS/GAMA study - and contrast the dust and associated properties for similar mass galaxies. This comparison is motivated by differences in results exhibited between multiple Herschel studies of early-type galaxies. A comparison between consistent modified blackbody derived dust mass is carried out, revealing strong differences between the two samples in both dust mass and dust-to-stellar mass ratio. In particular, the HeViCS sample lacks massive ETG with as high a specific dust content as found in H-ATLAS. This is most likely connected with the difference in environment for the two samples. We calculate nearest neighbour environment densities in a consistent way, showing that H-ATLAS ETG occupy sparser regions of the local Universe, whereas HeViCS ETG occupy dense regions. This is also true for ETG that are not Herschel-detected but are in the Virgo and GAMA parent samples. Spectral energy distributions are fit to the panchromatic data. From these we find that in H-ATLAS the specific star formation rate anticorrelates with stellar mass and reaches values as high as in our Galaxy. On the other hand HeViCS ETG appear to have little star formation. Based on the trends found here, H-ATLAS ETG are thought to have more extended star formation histories and a younger stellar population than HeViCS ETG.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We exploit long-baseline ALMA sub-mm observations of the lensed star-forming galaxy SDP 81 at z=3.042 to investigate the properties of inter-stellar medium on scales of 50-100pc. The kinematics of the CO gas within this system are well described by a rotationally-supported disk with an inclination-corrected rotation speed, v=320+/-20km/s and a dynamical mass of M=(3.5+/-1.0)x10^10Mo within a radius of 1.5 kpc. The disk is gas rich and unstable, with a Toomre parameter, Q=0.30+/-0.10 and so should collapse in to star-forming regions with Jeans length L_J~130pc. We identify five star-forming regions within the ISM on these scales and show that their scaling relations between luminosity, line-widths and sizes are significantly offset from those typical of molecular clouds in local Galaxies (Larson's relations). These offsets are likely to be caused by the high external hydrostatic pressure for the interstellar medium (ISM), P/kB=(40+/-20)x10^7K/cm3, which is ~10,000x higher than the typical ISM pressure in the Milky Way. The physical conditions of the star-forming ISM and giant molecular clouds appears to be similar to the those found in the densest environments in the local Universe, such as those in the Galactic center.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Interstellar dust in galaxies can be traced either through its extinction effects on the star light, or through its thermal emission at infrared wavelengths. Recent radiative transfer studies of several nearby edge-on galaxies have found an apparent inconsistency in the dust energy balance: the radiative transfer models that successfully explain the optical extinction underestimate the observed fluxes by an average factor of three. We investigate the dust energy balance for IC4225 and NGC5166, two edge-on spiral galaxies observed by the Herschel Space Observatory in the frame of the H-ATLAS survey. We start from models which were constrained from optical data and extend them to construct the entire spectral energy distribution of our galaxies. These predicted values are subsequently compared to the observed far-infrared fluxes. We find that including a young stellar population in the modelling is necessary as it plays a non-negligible part in the heating of the dust grains. While the modelling approach for both galaxies is nearly identical, we find two very different results. As is often seen in other edge-on spiral galaxies, the far-infrared emission of our radiative transfer model of IC4225 underestimates the observed fluxes by a factor of about three. For NGC5166 on the other hand, we find that both the predicted spectral energy distribution as well as the simulated images match the observations particularly well. We explore possible reasons for this difference and conclude that it is unlikely that one single mechanism is the cause of the dust energy balance problem in spiral galaxies. We discuss the different approaches that can be considered in order to get a conclusive answer on the origin this discrepancy.
  • [Show abstract] [Hide abstract]
    ABSTRACT: We present the rest-frame optical spectral energy distribution and stellar masses of six Herschel- selected gravitationally lensed dusty, star-forming galaxies (DSFGs) at 1 < z < 3. These galaxies were first identified with Herschel/SPIRE imaging data from the Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS) and the Herschel Multi-tiered Extragalactic Survey (HerMES). The targets were observed with Spitzer/IRAC at 3.6 and 4.5um. Due to the spatial resolution of the IRAC observations at the level of 2 arcseconds, the lensing features of a background DSFG in the near-infrared are blended with the flux from the foreground lensing galaxy in the IRAC imaging data. We make use of higher resolution Hubble/WFC3 or Keck/NIRC2 Adaptive Optics imaging data to fit light profiles of the foreground lensing galaxy (or galaxies) as a way to model the foreground components, in order to successfully disentangle the foreground lens and background source flux densities in the IRAC images. The flux density measurements at 3.6 and 4.5um, once combined with Hubble/WFC3 and Keck/NIRC2 data, provide important constraints on the rest-frame optical spectral energy distribution of the Herschel-selected lensed DSFGs. We model the combined UV- to millimeter-wavelength SEDs to establish the stellar mass, dust mass, star-formation rate, visual extinction, and other parameters for each of these Herschel-selected DSFGs. These systems have inferred stellar masses in the range 8 x 10^10 to 4 x 10^11 Msun and star-formation rates of around 100 Msun yr-1. This puts these lensed sub-millimeter systems well above the SFR-M* relation observed for normal star-forming galaxies at similar redshifts. The high values of SFR inferred for these systems are consistent with a major merger-driven scenario for star formation.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have modelled Atacama Large Millimeter/sub-millimeter Array (ALMA) long baseline imaging of the strong gravitational lens system H-ATLAS J090311.6+003906 (SDP.81). We have reconstructed the distribution of continuum emission in the z=3.042 source and we have determined its kinematic properties by reconstructing CO line emission. The continuum imaging reveals a highly non-uniform distribution of dust with clumps on scales of ~200pc. In contrast, the CO line emission shows a relatively smooth velocity field which resembles disk-like dynamics. Modelling the velocity field as a rotating disk indicates an inclination angle of (40 +/- 5) degrees, implying an intrinsic asymptotic rotation velocity of 320km/s and a dynamical mass of 3.5x10^{10} M_sol within 1.5kpc. We obtain similar estimates of the total molecular gas mass of 2.7x10^{10} M_sol and 1.4x10^{10} M_sol from the dust continuum emission and CO emission respectively. Our new reconstruction of the lensed HST near-infrared emission shows two objects that appear to be interacting, with the rotating disk of gas and dust revealed by ALMA distinctly offset from the near-infrared emission. The clumpy nature of the dust and the low value of the Toomre parameter of Q~0.2 we measure suggest that the disk is in a state of collapse. From our dynamical measurements, we estimate that the disk is unstable on scales from ~50pc (the Jeans length) to ~700pc (the scale on which the disk should be stabilized by shear). This agrees well with the sizes of the clumps that we observe. We estimate that stars are forming in the disk at a rate of 500 M_sol/yr, and that the star-formation efficiency in the disk is ~65 times greater than in typical low-redshift galaxies. Our findings add to the growing body of evidence that the most infra-red luminous, dust obscured galaxies in the high redshift Universe represent a population of merger induced starbursts.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this work we present IRAM-30m telescope observations of a sample of bulge-dominated galaxies with large dust lanes, which have had a recent minor merger. We find these galaxies are very gas rich, with H2 masses between 4x10^8 and 2x10^10 Msun. We use these molecular gas masses, combined with atomic gas masses from an accompanying paper, to calculate gas-to-dust and gas-to-stellar mass ratios. The gas-to-dust ratios of our sample objects vary widely (between ~50 and 750), suggesting many objects have low gas-phase metallicities, and thus that the gas has been accreted through a recent merger with a lower mass companion. We calculate the implied minor companion masses and gas fractions, finding a median predicted stellar mass ratio of ~40:1. The minor companion likely had masses between ~10^7 - 10^10 Msun. The implied merger mass ratios are consistent with the expectation for low redshift gas-rich mergers from simulations. We then go on to present evidence that (no matter which star-formation rate indicator is used) our sample objects have very low star-formation efficiencies (star-formation rate per unit gas mass), lower even than the early-type galaxies from ATLAS3D which already show a suppression. This suggests that minor mergers can actually suppress star-formation activity. We discuss mechanisms that could cause such a suppression, include dynamical effects induced by the minor merger.
    Monthly Notices of the Royal Astronomical Society 03/2015; 449(4). DOI:10.1093/mnras/stv597 · 5.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We explore the behaviour of [CII]-157.74um forbidden fine-structure line observed in a sample of 28 galaxies selected from ~50deg^2 of the H-ATLAS survey. The sample is restricted to galaxies with flux densities higher than S_160um>150mJy and optical spectra from the GAMA survey at 0.02<z<0.2. Far-IR spectra centred on this redshifted line were taken with the PACS instrument on-board the Herschel Space Observatory. The galaxies span 10<log(L_IR/Lo)<12 (where L_IR=L_IR[8-1000um]) and 7.3<log(L_[CII]/Lo)<9.3, covering a variety of optical galaxy morphologies. The sample exhibits the so-called [CII] deficit at high IR luminosities, i.e. L_[CII]/L_IR (hereafter [CII]/IR) decreases at high L_IR. We find significant differences between those galaxies presenting [CII]/IR>2.5x10^-3 with respect to those showing lower ratios. In particular, those with high ratios tend to have: (1) L_IR<10^11Lo; (2) cold dust temperatures, T_d<30K; (3) disk-like morphologies in r-band images; (4) a WISE colour 0.5<S_12um/S_22um<1.0; (5) low surface brightness Sigma_IR~10^8-9 Lo kpc^-2, (6) and specific star-formation rates of sSFR~0.05-3 Gyr^-1. We suggest that the strength of the far-UV radiation fields ( ) is main parameter responsible for controlling the [CII]/IR ratio. It is possible that relatively high creates a positively charged dust grain distribution, impeding an efficient photo-electric extraction of electrons from these grains to then collisionally excite carbon atoms. Within the brighter IR population, 11<log(L_IR/Lo)<12, the low [CII]/IR ratio is unlikely to be modified by [CII] self absorption or controlled by the presence of a moderately luminous AGN (identified via the BPT diagram).
  • K. Rowlands, L. Dunne, S. Maddox
    [Show abstract] [Hide abstract]
    ABSTRACT: Early-type galaxies (ETGs) are thought to be devoid of dust and star-formation, having formed most of their stars at early epochs. We present the detection of the dustiest ETGs in a large-area blind submillimetre survey with Herschel (H-ATLAS, Eales et al. 2010), where the lack of pre-selection in other bands makes it the first unbiased survey for cold dust in ETGs. The parent sample of 1087 H-ATLAS galaxies in this study have a 〉= 5σ detection at 250μm, a reliable optical counterpart to the submillimetre source (Smith et al. 2011) and a spectroscopic redshift from the GAMA survey (Driver et al. 2011). Additionally, we construct a control sample of 1052 optically selected galaxies undetected at 250μm and matched in stellar mass to the H-ATLAS parent sample to eliminate selection effects. ETGs were selected from both samples via visual classifications using SDSS images. Further details can be found in Rowlands et al. (2012). Physical parameters are derived for each galaxy using the multiwavelength spectral energy distribution (SED) fitting code of da Cunha, Charlot and Elbaz (2008), Smith et al. 2012, using an energy balance argument. We investigate the differences between the dusty ETGs and the general ETG population, and find that the H-ATLAS ETGs are more than an order of magnitude dustier than the control ETGs. The mean dust mass of the 42 H-ATLAS ETGs is 5.5 × 107M☉ (comparable to the dust mass of spirals in our sample), whereas the dust mass of the 233 control ETGs inferred from stacking at optical positions on the 250μm map is (0.8 - 4.0) × 106M☉ for 25-15 K dust. The average star-formation rate of the H-ATLAS ETGs is 1.0 dex higher than that of control ETGs, and the mean r-band light-weighted age of the H-ATLAS ETGs is 1.8 Gyr younger than the control ETGs. The rest-frame NUV - r colours of the H-ATLAS ETGs are 1.0 magnitudes bluer than the control ETGs, and some ETGs may be transitioning from the blue cloud to the red sequence. Some H-ATLAS ETGs show signs of morphological disturbance and may have undergone recent rejuvenation of their ISM via gas and dust delivered by mergers. It is found that late-type stars cannot produce enough dust to account for that observed in the H-ATLAS ETGs. This indicates that either an external source of dust from mergers is required, a substantial amount of dust grain growth must occur in the ISM, or dust destruction by hot X-ray gas is less efficient than predicted.
    Proceedings of the International Astronomical Union 02/2015; 10(H16). DOI:10.1017/S174392131400492X
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present the properties of the first 250um blind sample of nearby galaxies (15 < D < 46 Mpc), from the Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS). Herschel's sensitivity allows us to probe the faint end of the dust luminosity function for the first time, spanning a range of stellar mass (7.4 < log$_{10}$ M$_{\star}$ < 11.3 M$_{\odot}$), star formation activity (-11.8 < log$_{10}$ SSFR < -8.9 yr$^{-1}$), and gas fraction (3-96 per cent). Our representative sample of the local dusty Universe reveals great diversity, with 0.6 < FUV-Ks < 7.0 and representation across the Hubble Sequence. The median cold dust temperature is 14.6 K, colder than that in the HRS (18.5 K) and Planck ERCSC (17.7 K). The mean dust-to-stellar mass ratio (Md/M$_{\star}$) in our sample is higher than in these surveys by a factor of 3.7 and 1.8 respectively. Counter-intuitively, we find that the more dust rich a galaxy (defined by Md/M$_{\star}$), the lower its UV attenuation. Dust selection also produces a sample with a high median gas fraction of 52 per cent. From our volume-limited sample, we derive a dust mass volume density of (3.7 $\pm$ 0.7) x 10$^{5}$ M$_{\odot}$ Mpc$^{-3}$, a factor of 2 higher than derived previously by H-ATLAS and IRAS/SCUBA, but consistent with that derived by Planck (modulo large cosmic variance). Over half of this dust mass selected sample are very blue in FUV-Ks colour, with irregular and/or highly flocculent morphology. These very blue galaxies account for only 6 per cent of the stellar mass in our sample, but contain over 35 per cent of the dust mass. These are the most actively star forming galaxies in our sample, with the highest gas fractions and lowest attenuations. These galaxies appear to be immature, still in an early stage of converting their gas into stars; they should therefore provide valuable insights into the chemical evolution of young galaxies.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present Hubble Space Telescope (HST) WFC3 imaging and grism spectroscopy observations of the Herschel-selected gravitationally-lensed starburst galaxy HATLASJ1429-0028. The lensing system consists of an edge-on foreground disk galaxy at $z=0.218$ with a nearly complete Einstein ring of the infrared luminous galaxy at $z=1.027$. The WFC3 spectroscopy with G102 and G141 grisms, covering the wavelength range of 0.8 to 1.7 $\mu$m, resulted in detections of H$\alpha$+[NII], H$\beta$, [SII], and [OIII] for the background galaxy from which we measure line fluxes and ratios. The Balmer line ratio H$\alpha$/H$\beta$ of 7.5 $\pm$ 4.4, when corrected for [NII], results in an extinction for the starburst galaxy of E(B-V)=0.8 $\pm$ 0.5. The H$\alpha$ based star-formation rate, when corrected for extinction, is 100 $\pm$ 80 M$_{\odot}$ yr$^{-1}$, lower than the instantaneous star-formation rate of 390 $\pm$ 90 M$_{\odot}$ yr$^{-1}$ from the total IR luminosity. We also compare the nebular line ratios of HATLASJ1429-0028 with other star-forming and sub-mm bright galaxies. The nebular line ratios are consistent with an intrinsic ultra-luminous infrared galaxy with no evidence for excitation by an active galactic nuclei (AGN). We estimate the metallicity, 12 + log(O/H), of HATLASJ1429-0028 to be 8.49 $\pm$ 0.16. This value is below the average relations for stellar mass vs. metallicity of galaxies at $z \sim 1$ for a galaxy with stellar mass of 1.1 $\pm$ 0.4 $\times$ 10^11 M$_{\odot}$. The high stellar mass, lack of AGN indicators, low metallicity, and high star-formation rate of HATLASJ1429-0028 suggests that this galaxy is currently undergoing a rapid formation.
    The Astrophysical Journal 01/2015; 805(2). DOI:10.1088/0004-637X/805/2/140 · 6.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Gamma-ray bursts (GRBs) are the most energetic phenomena in the Universe; believed to result from the collapse and subsequent explosion of massive stars. Even though it has profound consequences for our understanding of their nature and selection biases, little is known about the dust properties of the galaxies hosting GRBs. We present analysis of the far-infrared properties of an unbiased sample of 21 GRB host galaxies (at an average redshift of $z\,=\,3.1$) located in the {\it Herschel} Astrophysical Terahertz Large Area Survey (H-ATLAS), the {\it Herschel} Virgo Cluster Survey (HeViCS), the {\it Herschel} Fornax Cluster Survey (HeFoCS), the {\it Herschel} Stripe 82 Survey (HerS) and the {\it Herschel} Multi-tiered Extragalactic Survey (HerMES), totalling $880$ deg$^2$, or $\sim 3$\% of the sky in total. Our sample selection is serendipitous, based only on whether the X-ray position of a GRB lies within a large-scale {\it Herschel} survey -- therefore our sample can be considered completely unbiased. Using deep data at wavelengths of 100\,--\,500$\,\mu$m, we tentatively detected 1 out of 20 GRB hosts located in these fields. We constrain their dust masses and star formation rates, and discuss these in the context of recent measurements of submillimetre galaxies and ultraluminous infrared galaxies. The average far-infrared flux of our sample gives an upper limit on star formation rate of $<114$ M$_{\sun}\,$yr$^{-1}$. The detection rate of GRB hosts is consistent with that predicted assuming that GRBs trace the cosmic star formation rate density in an unbiased way, i.e. that the fraction of GRB hosts with $\mbox{SFR}>500\,{\rm M}_\odot\,\mbox{yr}^{-1}$ is consistent with the contribution of such luminous galaxies to the cosmic star-formation density.
    Monthly Notices of the Royal Astronomical Society 01/2015; 448(2). DOI:10.1093/mnras/stv088 · 5.23 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We have developed a technique to robustly select high-z (>4) dusty, massive, star forming galaxies using far-IR Herschel/SPIRE data. Follow up of the first handful of sources has proven this technique to be both efficient and reliable, yet the existence of these sources is emphatically not predicted by current models. mm spectroscopy of the first few sources has confirmed that they predominantly lie above z > 4, including one source at z=6.34, the current highest redshift for luminous dusty star forming galaxies. To constrain the stellar masses and populations of these extreme galaxies, IRAC is required. Here we propose IRAC imaging of 31 Herschel/SPIRE high-z candidates selected from the HerMES and Herschel-ATLAS surveys to: 1) provide a complete census of star formation and stellar populations, and 2) contribute to the identification of LBG sources associated with the large scale structures that host these dusty starbursts.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present new Herschel photometric and spectroscopic observations of Supernova 1987A, carried out in 2012. Our dedicated photometric measurements provide new 70 micron data and improved imaging quality at 100 and 160 micron compared to previous observations in 2010. Our Herschel spectra show only weak CO line emission, and provide an upper limit for the 63 micron [O I] line flux, eliminating the possibility that line contaminations distort the previously estimated dust mass. The far-infrared spectral energy distribution (SED) is well fitted by thermal emission from cold dust. The newly measured 70 micron flux constrains the dust temperature, limiting it to nearly a single temperature. The far-infrared emission can be fitted by 0.5+-0.1 Msun of amorphous carbon, about a factor of two larger than the current nucleosynthetic mass prediction for carbon. The observation of SiO molecules at early and late phases suggests that silicates may also have formed and we could fit the SED with a combination of 0.3 Msun of amorphous carbon and 0.5 Msun of silicates, totalling 0.8 Msun of dust. Our analysis thus supports the presence of a large dust reservoir in the ejecta of SN 1987A. The inferred dust mass suggests that supernovae can be an important source of dust in the interstellar medium, from local to high-redshift galaxies.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present the first measurement of the correlation between the map of the CMB lensing potential derived from the Planck nominal mission data and $z >1.5$ galaxies detected by the Herschel-ATLAS (H-ATLAS) survey covering about $600\,\hbox{deg}^2$, i.e. about 1.4% of the sky. A highly significant ($20\,\sigma$) correlation is found, substantially stronger than expected. The result was checked by performing a number of null tests. The galaxy bias parameter, $b$, derived from a joint analysis of the cross-power spectrum and of the auto-power spectrum of the galaxy density contrast is found to be $b=2.80^{+0.12}_{-0.11}$, consistent with earlier estimates for H-ATLAS galaxies at similar redshifts. On the other hand, the amplitude of the cross-correlation is found to be a factor $1.62 \pm 0.16$ higher than expected from the standard model and also found by cross-correlation analyses with other tracers of the large-scale structure. The enhancement due to lensing magnification can account for only a fraction of the excess cross-correlation signal. We suggest that most of it may be due to an incomplete removal of the contamination of the CIB, that includes the H-ATLAS sources we are cross-correlating with. In any case, the highly significant detection reported here using a catalog covering only 1.4% of the sky demonstrates the potential of CMB lensing correlations with sub-mm surveys.
    The Astrophysical Journal 10/2014; 802(1). DOI:10.1088/0004-637X/802/1/64 · 6.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We use 10,387 galaxies from the Herschel Astrophysical TeraHertz Large Area Survey (H-ATLAS) to probe the far-infrared radio correlation (FIRC) of star forming galaxies as a function of redshift, wavelength, and effective dust temperature. All of the sources in our 250 {\mu}m-selected sample have spectroscopic redshifts, as well as 1.4 GHz flux density estimates measured from the Faint Images of the Radio Sky at Twenty centimetres (FIRST) survey. This enables us to study not only individual sources, but also the average properties of the 250 {\mu}m selected population using median stacking techniques. We find that individual sources detected at $\geq 5\sigma$ in both the H-ATLAS and FIRST data have logarithmic flux ratios (i.e. FIRC $q_\lambda$ parameters) consistent with previous studies of the FIRC. In contrast, the stacked values show larger $q_\lambda$, suggesting excess far-IR flux density/luminosity in 250{\mu}m selected sources above what has been seen in previous analyses. In addition, we find evidence that 250 {\mu}m sources with warm dust SEDs have a larger 1.4 GHz luminosity than the cooler sources in our sample. Though we find no evidence for redshift evolution of the monochromatic FIRC, our analysis reveals significant temperature dependence. Whilst the FIRC is reasonably constant with temperature at 100 {\mu}m, we find increasing inverse correlation with temperature as we probe longer PACS and SPIRE wavelengths. These results may have important implications for the use of monochromatic dust luminosity as a star formation rate indicator in star-forming galaxies, and in the future, for using radio data to determine galaxy star formation rates.
    Monthly Notices of the Royal Astronomical Society 09/2014; 445(3). DOI:10.1093/mnras/stu1830 · 5.23 Impact Factor

Publication Stats

4k Citations
717.85 Total Impact Points

Institutions

  • 2011–2015
    • University of Canterbury
      • Department of Physics and Astronomy
      Christchurch, Canterbury, New Zealand
  • 2006–2015
    • The University of Edinburgh
      • Institute for Astronomy (IfA)
      Edinburgh, Scotland, United Kingdom
  • 2005–2015
    • University of Nottingham
      • School of Physics and Astronomy
      Nottigham, England, United Kingdom
  • 2014
    • Imperial College London
      Londinium, England, United Kingdom
  • 2013
    • University of Maryland, College Park
      • Department of Astronomy
      Maryland, United States
  • 2012
    • Rutgers, The State University of New Jersey
      • Department Physics and Astronomy
      New Brunswick, New Jersey, United States
    • University of Hertfordshire
      • Centre for Astrophysics Research (CAR)
      Hatfield, England, United Kingdom
  • 1999–2011
    • Cardiff University
      • School of Physics and Astronomy
      Cardiff, Wales, United Kingdom
  • 2010
    • University of California, Irvine
      • Department of Physics and Astronomy
      Irvine, California, United States
  • 2007
    • National Research Council Canada
      Ottawa, Ontario, Canada
    • Chinese Academy of Sciences
      • Purple Mountain Observatory
      Peping, Beijing, China
  • 2002–2003
    • University of Wales
      Cardiff, Wales, United Kingdom