Eduardo Luiz Voigt

Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil

Are you Eduardo Luiz Voigt?

Claim your profile

Publications (14)13.67 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Seedling establishment in saline conditions is crucial for plant survival and productivity. This study was performed to elucidate the biochemical and physiological mechanisms involved with the recovery and establishment of cashew seedlings subjected to salinity. The changes in the Na+ levels and K/Na ratios, associated with relative water content, indicated that osmotic effects were more important than salt toxicity in the inhibition of seedling growth and cotyledonary protein mobilization. Salinity (50mM NaCl) induced a strong delay in protein breakdown and amino acid accumulation in cotyledons, and this effect was closely related to azocaseinolytic and protease activities. In parallel, proline and free amino acids accumulated in the leaves whereas the protein content decreased. Assays with specific inhibitors indicated that the most important proteases in cotyledons were of serine, cysteine and aspartic types. Proteomic analysis revealed that most of the cashew reserve proteins are 11S globulin-type and that these proteins were similarly degraded under salinity. In the late establishment phase, the salt-treated seedlings displayed an unexpected recovery in terms of leaf growth and N mobilization from cotyledon to leaves. This recovery coordinately involved a great leaf expansion, decreased amino acid content and increased protein synthesis in leaves. This response occurred in parallel with a prominent induction in the cotyledon proteolytic activity. Altogether, these data suggest that a source-sink mechanism involving leaf growth and protein synthesis may have acted as an important sink for reserve mobilization contributing to the seedling establishment under salinity. The amino acids that accumulated in the leaves may have exerted negative feedback to act as a signal for the induction of protease activity in the cotyledon. Overall, these mechanisms employed by cashew seedlings may be part of an adaptive process for the efficient rescue of cotyledonary proteins, as the cashew species originates from an environment with N-poor soil and high salinity.
    Journal of plant physiology. 06/2014; 171(15):1362-1371.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This study assessed the relationships between external K+ supply and K+ : Na+ ratios associated with Na+ toxicity in Jatropha curcas. Plants were exposed to increasing external K+ concentrations (6.25, 12.5, 25, 37.5, and 50 mM), combined with 50 mM NaCl in a nutrient solution. Photosynthesis progressively increased as the external K+ : Na+ ratios increased up to 0.75. The increase of photosynthesis and plant dry matter correlated positively with K+ : Na+ in xylem and leaves. The transport rates of K+ and Na+ from roots to xylem and leaves were inversely correlated. These ions presented an antagonistic pattern of accumulation in all organs. Maximum rates of photosynthesis and plant growth occurred with leaf K+ : Na+ ratios that ranged from 1.0 to 2.0, indicating that this parameter in leaves might be a good indicator for a favorable K+ homeostasis under salinity conditions. The higher K+ affinity and selectivity compared with Na+ in all organs associated with higher xylem flux and transport to shoots are essential for maintaining adequate K+ : Na+ ratios at the whole-plant level. These characteristics, combined with adequate K+ concentrations, allow J. curcas to sustain high rates of photosynthesis and growth even under toxic NaCl levels.
    Journal of Plant Nutrition and Soil Science 04/2013; 176(2). · 1.38 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Phenol peroxidase (POX) is a dual enzyme that is involved with hydrogen peroxide scavenging and lignin biosynthesis, contributing to growth inhibition by secondary wall thickening. In order to relate growth inhibition to salt-induced oxidative modulation, the activities of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and POX were evaluated in cowpea roots under salinity. Four-day-old seedlings of the Pitiúba and Pérola cultivars were exposed to 0, 25, 50, 75 and 100 mM NaCl in germination paper under controlled conditions. After two days of treatment, root length was reduced under 100 mM NaCl by 56 and 26% in Pitiúba and Pérola, respectively, which was associated with enhanced electrolyte leakage and cell death in the root apex. NaCl salinity did not trigger lipid peroxidation, indicating that cell death was probably due to membrane damage instead of oxidative stress. Salt stress reduced the activity of SOD, CAT and APX and increased the POX activity, demonstrating that this enzyme plays a role in oxidative protection in cowpea roots exposed to NaCl salinity. In conclusion, salt-induced growth inhibition in cowpea roots could be attributed, at least in part, to a coordinate action involving an increase in POX activity and a drop in CAT and APX activities.
    Acta Botanica Brasilica 06/2012; 26(2):342-349. · 0.37 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This work evaluated the oxidative protection mechanisms triggered by high temperatures in salt-stressed cashew (Anacardium occidentale) plants. In the first experiment, cashew plants in a greenhouse were subjected to a wide range of NaCl concentrations under natural conditions involving high temperatures. In the second experiment, the plants were exposed to 100mM NaCl alone, heat alone (42°C) or a combination of both heat and NaCl. Data analysis from the two experiments revealed that salt-stressed plants were favored by high temperatures in terms of oxidative protection, as indicated by a decrease in lipid peroxidation and H2O2 concentration. The H2O2 concentration and lipid peroxidation results were corroborated in long-term salt exposure in a greenhouse; however, greenhouse plants that were subjected to high salinity exhibited mild protein oxidation. High temperature positively modulated protein content and the activities of catalase (CAT), superoxide dismutase (SOD) and ascorbate peroxidase (APX) in salt-stressed plants, but salinity exerted a negative effect on APX activity. The changes in ascorbate redox state were favorable for cashew protection under high salinity combined with heat. The data demonstrate that high temperature is essential for the oxidative protection of salt-stressed cashew plants, which display an efficient protection mechanism represented by the activities of CAT, SOD and APX as well as favorable changes in the ascorbate redox state under acute salt stress.
    Environmental and Experimental Botany - ENVIRON EXP BOT. 01/2011; 74:162-170.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The salt stress effect in root growth and antioxidative response were investigated in two cowpea cultivars which differ in salt tolerance in terms of plant growth and leaf oxidative response. Four-day-old seedlings (establishment stage) were exposed to 100 mM NaCl for two days. The roots of the two cultivars presented distinct response in terms of salt-induced changes in elongation and dry weight. Root dry weight was only decreased in Pérola (sensitive) cultivar while root elongation was mainly hampered in Pitiúba (tolerant). Root relative water content remained unchanged under salinity, but root Na+ content achieved toxic levels as revealed by the K+/Na+ ratio in both cultivars. Then, root growth inhibition might be due to ionic toxicity rather than by salt-induced water deficit. Although electrolyte leakage markedly increased mainly in the Pérola genotype, lipid peroxidation decreased similarly in both salt-stressed cultivars. APX and SOD activities were reduced by salinity in both cultivars reaching similar values despite the decrease in Pitiúba had been higher compared to respective controls. CAT decreased significantly in Pitiúba but did not change in Pérola, while POX increased in both cultivars. The salt-induced decrease in the CAT activity of Pitiúba root is, at principle, incompatible to allow a more effective oxidative protection. Our results support the idea that the activities of SOD, APX, CAT and POX and lipid peroxidation in cowpea seedling roots were not associated with differential salt tolerance as previously characterized in terms of growth rate and oxidative response in plant leaves.
    Brazilian Journal of Plant Physiology 12/2009; 22(2):113-122.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this work was to evaluate the influence of cashew (Anacardium occidentale L.) rootstocks on salt resistance in grafted plantlets. The plantlets were obtained by grafting the BRS 226 scion on CAPI 4, CCP 09 and BRS 226 rootstocks, and were exposed to nutrient solution without NaCl (control) or with 200 mM NaCl (salt treatment) in hydroponics under controlled temperature, humidity, and luminosity conditions during 12 days. The experimental design was a completely randomized in factorial arrangement 3x2 (three scion/rootstock combinations, two NaCl concentrations) with four replicates. Na+, Cl-, K+ and organic solute concentrations and toxicity symptoms on leaves were determined. Na+ and Cl- contents, the K+/Na+ ratio and the free amino acid and proline concentrations in leaves were directly related to the visual toxicity symptoms. The rootstocks were classified as sensitive (CAPI 4), intermediate (CCP 09), and resistant (BRS 226) to high salinity. This variation was a consequence of the rootstock influence on Na+ and Cl- partitioning.
    Pesquisa Agropecuária Brasileira 04/2009; 44(4):361-367. · 0.66 Impact Factor
  • Source
    Pesquisa Agropecuaria Brasileira - PAB. 01/2009; 44(4).
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Seedling establishment is a critical process to crop productivity, especially under saline conditions. This work was carried out to investigate the hypothesis that reserve mobilization is coordinated with salt-induced inhibition of seedling growth due to changes in source-sink relations. To test this hypothesis, cashew nuts (Anacardium occidentale) were sown in vermiculite irrigated daily with distilled water (control) or 50mM NaCl and they were evaluated at discrete developmental stages from the seed germination until the whole seedling establishment. The salt treatment coordinately delayed the seedling growth and the cotyledonary reserve mobilization. However, these effects were more pronounced at late seedling establishment than in earlier stages. The storage protein mobilization was affected by salt stress before the lipid and starch breakdown. The globulin fraction represented the most important storage proteins of cashew cotyledons, and its mobilization was markedly delayed by NaCl along the seedling establishment. Free amino acids were mostly retained in the cotyledons of salt-treated seedlings when the mobilization of storage proteins, lipids and starch was strongly delayed. Proline was not considerably accumulated in the cotyledons of cashew seedlings as a response to NaCl salinity. According to these results it is noteworthy that the salt-induced inhibition of seedling growth is narrowly coordinated with the delay of reserve mobilization and the accumulation of hydrolysis products in cotyledons. Also, it was evidenced that free amino acids, especially those related to nitrogen transport, are potential signals involved in the regulation of storage protein hydrolysis during cashew seedling establishment under NaCl salinity.
    Journal of plant physiology 05/2008; 166(1):80-9. · 2.50 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In order to identify salt tolerance indicators, several physiological variables were evaluated in two contrasting cashew (Anacardium occidentale L.) rootstocks in response to salt stress. The tolerant CCP 09 genotype showed better growth performance after two weeks under a large range of NaCl salinity (50, 100, 150 and 200 mM). The NaCl treatments induced a significant drop in transpiration as a consequence of an increased stomatal resistance in both genotypes. No significant differences in Na+, Cl, and K+ concentrations were found in both roots and leaves regardless of rootstocks. The tolerant genotype exhibited lower relative water content and less negative leaf osmotic potential as compared with the sensitive genotype and, therefore, these variables could not be related to salt tolerance. Salt stress caused more significant changes in protein and amino acid concentrations in roots than in leaves. Among the physiological indicators, leaf membrane damage was closely associated with the differences in salt tolerance between the two cashew genotypes. Furthermore, under NaCl salinity the tolerant rootstock showed greater ability to accumulate compatible organic solutes (amino acids, proline and soluble sugars) in leaves in addition to maintaining the soluble sugar concentration in roots as compared with the sensitive rootstock.
    Brazilian Journal of Plant Physiology 01/2008; 20(1).
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Na+ accumulation was investigated in the roots of 11-d-old cowpea [Vigna unguiculata (L.) Walp.] plants. The relative contribution of different membrane transporters on Na+ uptake was estimated by applying Ca2+, K+, NH4 +, and pharmacological inhibitors. Na+ accumulation into the root symplast was decreased by half in the presence of 1 mM Ca2+ and it was almost abolished by 100 mM K+. The inhibitory effect of external NH4+ on Na+ accumulation was more pronounced in the roots of NH4 +-free growing plants. Na+ accumulation was reduced about 73 % by 0.1 mM flufenamate and it was almost blocked by 2 mM quinine. In addition, 20 mM tetraethylammonium and 1.0 mM Cs+ decreased Na+ accumulation by 28 and 30 %, respectively. These results evidenced that low-affinity Na+ uptake by cowpea roots depends on Ca2+-sensitive and Ca2+-insensitive pathways. The Ca2+-sensitive pathway is probably mediated by nonselective cation channels and the Ca2+-insensitive one may involve K+ channels and to a lesser extent NH4 +-sensitive K+ transporters.
    Biologia Plantarum 53(4):764-768. · 1.69 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The work evaluated the role of enzymatic and non-enzymatic antioxidants in cashew (Anacardium occidentale) leaves under 0, 50, 100, 150 and 200 mM NaCl. Salt stress increased protein oxidation and decreased the lipid peroxidation, indicating that lipids are less susceptible to oxidative damage. The superoxide dismutase (SOD) activity was not changed, ascorbate peroxidase (APX) activity steadily decreased while the catalase (CAT) activity strongly increased with the increasing NaCl concentration. High salinity also induced alterations in the ascorbate (AsA) and glutathione (GSH) redox state. The salt resistance in cashew may be associated with maintaining of SOD activity and upregulation of CAT activity in concert with the AsA and GSH antioxidants.
    Biologia Plantarum 56(1). · 1.69 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The work evaluated the role of enzymatic and non-enzymatic antioxidants in cashew (Anacardium occidentale) leaves under 0, 50, 100, 150 and 200 mM NaCl. Salt stress increased protein oxidation and decreased the lipid peroxidation, indicating that lipids are less susceptible to oxidative damage. The superoxide dismutase (SOD) activity was not changed, ascorbate peroxidase (APX) activity steadily decreased while the catalase (CAT) activity strongly increased with the increasing NaCl concentration. High salinity also induced alterations in the ascorbate (AsA) and glutathione (GSH) redox state. The salt resistance in cashew may be associated with maintaining of SOD activity and upregulation of CAT activity in concert with the AsA and GSH antioxidants.
    Biologia Plantarum · 1.69 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this work was to investigate the balance between the activities of ascorbate peroxidase (APX) and phenol peroxidases (POD) and cowpea root growth in response to dehydration and salt stress. Root growth and indicators of oxidative response were markedly changed in response to salinity and dehydration. Salt treatment strongly inhibited root elongation, which was associated with an increase in lignin content and a significant decrease in the concentrations of apoplastic hydrogen peroxide (H2O2) and ascorbate. In conditions of extreme salinity, cytosol–APX activity was significantly decreased. In contrast, cell-wall POD activity was greatly increased, whereas lipid peroxidation was unchanged. These results indicate that POD could be involved in both H2O2 scavenging and the inhibition of root elongation under high salinity. In contrast, dehydration stimulated primary root elongation and increased lipid peroxidation and apoplastic ascorbate content, but it did not change APX and POD activities or H2O2 concentration. When cowpea roots were subjected to salinity followed by dehydration, the water and pressure potentials were decreased, and lipid peroxidation was markedly increased, highlighting the additive nature of the inhibitory effects caused by salt and dehydration. The proline concentration was markedly increased by dehydration alone, as well as by salt followed by dehydration, suggesting a possible role for proline in osmotic adjustment. Salinity and dehydration induce contrasting responses in the growth and morphology of cowpea roots. These effects are associated with different types of oxidative modulation involving cytosolic-APX and cell-wall POD activities and apoplast H2O2 and ascorbate levels.
    Journal of Plant Growth Regulation 32(2). · 1.99 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this work was to investigate the role of the antioxidant enzymes in salt tolerance comparing the salt-sensitive (Pérola) and a salt-tolerant (Pitiúba) cultivar of cowpea [Vigna unguiculata (L.) Walp.]. Salt stress (100 mM NaCl for 8 d) reduced the leaf growth rate more in the sensitive cultivar. The salt-induced decrease in the relative water content, Na+ accumulation and increase in leaf electrolyte leakage was similar in both cultivars. Salt stress induced a higher increase in the activities of superoxide dismutase (SOD), ascorbate peroxidase (APX) and phenol peroxidase (POX) in the tolerant cultivar than in sensitive one.
    Biologia Plantarum 54(1):159-163. · 1.69 Impact Factor