M G Yates

Universidade Federal do Paraná, Curityba, Paraná, Brazil

Are you M G Yates?

Claim your profile

Publications (77)185.12 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Although the use of plant growth-promoting bacteria in agriculture is a reality, the molecular basis of plant-bacterial interaction is still poorly understood. We used a proteomic approach to study the mechanisms of interaction of Herbaspirillum seropedicae SmR1 with rice. Root proteins of rice seedlings inoculated or non-inoculated with H. seropedicae were separated by 2-D electrophoresis. Differentially expressed proteins were identified by MALDI-TOF/TOF and MASCOT program. Among the identified proteins of H. seropedicae, the dinitrogenase reductase NifH and glutamine synthetase GlnA, which participate in nitrogen fixation and ammonium assimilation, respectively, were the most abundant. The rice proteins up-regulated included the S-adenosylmethionine synthetase, methylthioribose kinase and acireductone dioxygenase 1, all of which are involved in the methionine recycling. S-adenosylmethionine synthetase catalyzes the synthesis of S-adenosylmethionine, an intermediate used in transmethylation reactions and in ethylene, polyamine and phytosiderophore biosynthesis. RT-qPCR analysis also confirmed that the methionine recycling and phytosiderophore biosynthesis genes were up-regulated, while ACC oxidase mRNA level was down-regulated in rice roots colonized by bacteria. In agreement with these results, ethylene production was reduced approximately three-fold in rice roots colonized by H. seropedicae. The results suggest that H. seropedicae stimulates methionine recycling and phytosiderophore synthesis, and diminishes ethylene synthesis in rice roots.
    Journal of Proteome Research 08/2013; · 5.06 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Herbaspirillum seropedicae is a plant growth-promoting diazotrophic betaproteobacterium which associates with important crops, such as maize, wheat, rice and sugar-cane. We have previously reported that intact lipopolysaccharide (LPS) is required for H. seropedicae attachment and endophytic colonization of maize roots. In this study, we present evidence that the LPS biosynthesis gene waaL (codes for the O-antigen ligase) is induced during rhizosphere colonization by H. seropedicae. Furthermore a waaL mutant strain lacking the O-antigen portion of the LPS is severely impaired in colonization. Since N-acetyl glucosamine inhibits H. seropedicae attachment to maize roots, lectin-like proteins from maize roots (MRLs) were isolated and mass spectrometry (MS) analysis showed that MRL-1 and MRL-2 correspond to maize proteins with a jacalin-like lectin domain, while MRL-3 contains a B-chain lectin domain. These proteins showed agglutination activity against wild type H. seropedicae, but failed to agglutinate the waaL mutant strain. The agglutination reaction was severely diminished in the presence of N-acetyl glucosamine. Moreover addition of the MRL proteins as competitors in H. seropedicae attachment assays decreased 80-fold the adhesion of the wild type to maize roots. The results suggest that N-acetyl glucosamine residues of the LPS O-antigen bind to maize root lectins, an essential step for efficient bacterial attachment and colonization.
    PLoS ONE 01/2013; 8(10):e77001. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Sugarcane is an economically important culture in Brazil. Endophytic bacteria live inside plants, and can provide many benefits to the plant host. We analyzed the bacterial diversity of sugarcane cultivar RB-72454 by cultivation-independent techniques. Total DNA from sugarcane stems from a commercial plantation located in Paraná State was extracted. Partial 16S rRNA genes were amplified and sequenced for library construction. Of 152 sequences obtained, 52% were similar to 16S rRNA from Pseudomonas sp, and 35.5% to Enterobacter sp. The genera Pantoea, Serratia, Citrobacter, and Klebsiella were also represented. The endophytic communities in these sugarcane samples were dominated by the families Enterobacteriaceae and Pseudomonadaceae (class Gammaproteobacteria).
    Genetics and molecular research: GMR 01/2013; 12(4):4549-58. · 0.99 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Several bacteria are able to degrade flavonoids and use them as carbon sources or as a detoxification mechanism. Degradation pathways have been proposed for several bacteria but the genes responsible are not known. We identified in the genome of the endophyte Herbaspirillum seropedicae SmR1 an operon potentially associated with the degradation of aromatic compounds. We show that this operon is involved in naringenin degradation and its expression is induced by naringenin and chrysin, two closely related flavonoids. Mutation of fdeA, the first gene of the operon, and fdeR, its transcriptional activator, abolished the ability of H. seropedicae to degrade naringenin.
    Microbiology 11/2012; · 3.06 Impact Factor
  • Source
    Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas / Sociedade Brasileira de Biofisica ... [et al.] 10/2012; · 1.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: Herbaspirillum rubrisubalbicans was first identified as a bacterial plant pathogen, causing the mottled stripe disease in sugarcane. H. rubrisubalbicans can also associate with various plants of economic interest in a non pathogenic manner. RESULTS: A 21 kb DNA region of the H. rubrisubalbicans genome contains a cluster of 26 hrp/hrc genes encoding for the type three secretion system (T3SS) proteins. To investigate the contribution of T3SS to the plant-bacterial interaction process we generated mutant strains of H. rubrisubalbicans M1 carrying a Tn5 insertion in both the hrcN and hrpE genes. H. rubrisulbalbicans hrpE and hrcN mutant strains of the T3SS system failed to cause the mottled stripe disease in the sugarcane susceptible variety B-4362. These mutant strains also did not produce lesions on Vigna unguiculata leaves. Oryza sativa and Zea mays colonization experiments showed that mutations in hrpE and hrcN genes reduced the capacity of H. rubrisulbalbicans to colonize these plants, suggesting that hrpE and hrcN genes are involved in the endophytic colonization. CONCLUSIONS: Our results indicate that the T3SS of H. rubrisubalbicans is necessary for the development of the mottled stripe disease and endophytic colonization of rice.
    BMC Microbiology 06/2012; 12(1):98. · 2.98 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Herbaspirillum seropedicae is a Gram-negative endophytic diazotroph that associates with important agricultural crops. Several studies have shown that this organism can contribute to plant growth suggesting potential for use as a biofertilizer. Nitrogen fixation in H. seropedicae is highly regulated both at the transcriptional and post-translational levels. Both of these regulatory levels respond to the ammonium availability in the external medium through a cascade of interacting proteins. The transcriptional regulation of the process also responds to oxygen, which is probably directly sensed by the transcriptional regulator NifA. Here, we review current knowledge of the regulation of nitrogen fixation in H. seropedicae. The signal transduction protein GlnK is a key regulator of nitrogen fixation at both the transcriptional and post-translational levels. In vitro analysis indicates that GlnK interacts with NifA and probably modulates its activity, thereby controlling nif expression. GlnK, together with the ammonium channel protein AmtB, also participates in the post-translational regulation of nitrogenase activity by an unidentified mechanism. This regulatory system efficiently controls nitrogen fixation according to prevailing fixed nitrogen and oxygen levels in H. seropedicae.
    Plant and Soil 01/2012; · 3.24 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The molecular mechanisms of plant recognition, colonization, and nutrient exchange between diazotrophic endophytes and plants are scarcely known. Herbaspirillum seropedicae is an endophytic bacterium capable of colonizing intercellular spaces of grasses such as rice and sugar cane. The genome of H. seropedicae strain SmR1 was sequenced and annotated by The Paraná State Genome Programme--GENOPAR. The genome is composed of a circular chromosome of 5,513,887 bp and contains a total of 4,804 genes. The genome sequence revealed that H. seropedicae is a highly versatile microorganism with capacity to metabolize a wide range of carbon and nitrogen sources and with possession of four distinct terminal oxidases. The genome contains a multitude of protein secretion systems, including type I, type II, type III, type V, and type VI secretion systems, and type IV pili, suggesting a high potential to interact with host plants. H. seropedicae is able to synthesize indole acetic acid as reflected by the four IAA biosynthetic pathways present. A gene coding for ACC deaminase, which may be involved in modulating the associated plant ethylene-signaling pathway, is also present. Genes for hemagglutinins/hemolysins/adhesins were found and may play a role in plant cell surface adhesion. These features may endow H. seropedicae with the ability to establish an endophytic life-style in a large number of plant species.
    PLoS Genetics 05/2011; 7(5):e1002064. · 8.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The PII protein is apparently involved in the control of NifA activity in Herbaspirillum seropedicae. To evaluate the probable role of PII in signal transduction, uridylylation assays were conducted with purified H. seropedicae PII and Escherichia coli GlnD, or a cell-free extract of H. seropedicae as sources of uridylylating activity. The results showed that α-ketoglutarate and ATP stimulate uridylylation whereas glutamine inhibits uridylylation. Deuridylylation of PII-UMP was dependent on glutamine and inhibited by ATP and α-ketoglutarate. PII uridylylation and (or) deuridylylation in response to these effectors suggests that PII is a nitrogen level signal transducer in H. seropedicae.Key words: nitrogen regulation, uridylylation, PII protein, Herbaspirillum seropedicae.
    Canadian Journal of Microbiology 02/2011; 47(4):309-314. · 1.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Herbaspirillum seropedicae SmR1 is a nitrogen fixing endophyte associated with important agricultural crops. It produces polyhydroxybutyrate (PHB) which is stored intracellularly as granules. However, PHB metabolism and regulatory control is not yet well studied in this organism. In this work we describe the characterization of the PhbF protein from H. seropedicae SmR1 which was purified and characterized after expression in E. coli. The purified PhbF protein was able to bind to eleven putative promoters of genes involved in PHB metabolism in H. seropedicae SmR1. In silico analyses indicated a probable DNA-binding sequence which was shown to be protected in DNA footprinting assays using purified PhbF. Analyses using lacZ fusions showed that PhbF can act as a repressor protein controlling the expression of PHB metabolism-related genes. Our results indicate that H. seropedicae SmR1 PhbF regulates expression of phb-related genes by acting as a transcriptional repressor. The knowledge of the PHB metabolism of this plant-associated bacterium may contribute to the understanding of the plant-colonizing process and the organism's resistance and survival in planta.
    BMC Microbiology 01/2011; 11:230. · 2.98 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Five thousand mutants of Herbaspirillum seropedicae SmR1 carrying random insertions of transposon pTnMod-OGmKmlacZ were screened for differential expression of LacZ in the presence of naringenin. Among the 16 mutants whose expression was regulated by naringenin were genes predicted to be involved in the synthesis of exopolysaccharides, lipopolysaccharides, and auxin. These loci are probably involved in establishing interactions with host plants.
    Applied and Environmental Microbiology 01/2011; 77(6):2180-3. · 3.95 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Bacteria are extraordinarily diverse microorganisms with a huge potential to benefit environmental and agricultural systems. Comprehensive studies in complex habitats such as soils and plants have led to the development of genetic tools to evaluate gene expression and bacterial colonization under controlled or environmental conditions and to obtain genetically engineered organisms for environmental release. In addition, current advances in genomic and metagenomic research will add to the number of genes with potential for biotechnological applications, which will require the development of appropriate genetic systems to fulfill their potential for both industrial and agricultural applications. The aim of the present review is to assess the approaches and recent progress in vector design and genetic tools to study and manipulate plant–bacterial interactions, as well as strategies to construct genetically modified strains for environmental release.Highlights► Genetic systems to industrial and agricultural applications. ► Genetic tools to evaluate gene expression and bacterial colonization under controlled or environmental conditions. ► Genetic tools to study and manipulate plant–bacterial interactions. ► Biological containment systems for rhizobia.
    Soil Biology and Biochemistry 01/2011; 43(8):1626-1638. · 4.41 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Herbaspirillum seropedicae is an endophytic diazotrophic bacterium, which associates with important agricultural plants. In the present study, we have investigated the attachment to and internal colonization of Phaseolus vulgaris roots by the H. seropedicae wild-type strain SMR1 and by a strain of H. seropedicae expressing a red fluorescent protein (DsRed) to track the bacterium in the plant tissues. Two-day-old P. vulgaris roots were incubated at 30°C for 15 min with 6 x 10(8) CFU/mL H. seropedicae SMR1 or RAM4. Three days after inoculation, 4 x 10(4) cells of endophytic H. seropedicae SMR1 were recovered per gram of fresh root, and 9 days after inoculation the number of endophytes increased to 4 x 10(6) CFU/g. The identity of the recovered bacteria was confirmed by amplification and sequencing of the 16SrRNA gene. Furthermore, confocal microscopy of P. vulgaris roots inoculated with H. seropedicae RAM4 showed that the bacterial cells were attached to the root surface 15 min after inoculation; fluorescent bacteria were visible in the internal tissues after 24 h and were found in the central cylinder after 72 h, showing that H. seropedicae RAM4 is capable of colonizing the roots of the dicotyledon P. vulgaris. Determination of dry weight of common bean inoculated with H. seropedicae SMR1 suggested that this bacterium has a negative effect on the growth of P. vulgaris.
    Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas / Sociedade Brasileira de Biofisica ... [et al.] 01/2011; 44(3):182-5. · 1.08 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this study we disrupted two Herbaspirillum seropedicae genes, rfbB and rfbC, responsible for rhamnose biosynthesis and its incoporation into LPS. GC-MS analysis of the H. seropedicae wild-type strain LPS oligosaccharide chain showed that rhamnose, glucose and N-acetyl glucosamine are the predominant monosaccharides, whereas rhamnose and N-acetyl glucosamine were not found in the rfbB and rfbC strains. The electrophoretic pattern of the mutants LPS was drastically altered when compared with the wild type. Knockout of rfbB or rfbC increased the sensitivity towards SDS, polymyxin B sulfate and salicylic acid. The mutants attachment capacity to maize root surface plantlets was 100-fold lower than the wild type. Interestingly, the wild-type capacity to attach to maize roots was reduced to a level similar to that of the mutants when the assay was performed in the presence of isolated wild-type LPS, glucosamine or N-acetyl glucosamine. The mutant strains were also significantly less efficient in endophytic colonization of maize. Expression analysis indicated that the rfbB gene is upregulated by naringenin, apigenin and CaCl(2). Together, the results suggest that intact LPS is required for H. seropedicae attachment to maize root and internal colonization of plant tissues.
    Environmental Microbiology 08/2010; 12(8):2233-44. · 6.24 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Herbaspirillum seropedicae is a nitrogen-fixing bacterium that grows well with ammonium chloride or sodium nitrate as alternative single nitrogen sources but that grows more slowly with L-alanine, L-serine, L-proline, or urea. The ntrC mutant strain DCP286A was able to utilize only ammonium or urea of these nitrogen sources. The addition of 1 mmol.L-1 ammonium chloride to the nitrogen-fixing wild-type strain inhibited nitrogenase activity rapidly and completely. Urea was a less effective inhibitor; approximately 20% of nitrogenase activity remained 40 min after the addition of 1 mmol x L-1 urea. The effect of the ntrC mutation on nitrogenase inhibition (switch-off) was studied in strain DCP286A containing the constitutively expressed gene nifA of H. seropedicae. In this strain, nitrogenase inhibition by ammonium was completely abolished, but the addition of urea produced a reduction in nitrogenase activity similar to that of the wild-type strain. The results suggest that the NtrC protein is required for assimilation of nitrate and the tested amino acids by H. seropedicae. Furthermore, NtrC is also necessary for ammonium-induced switch-off of nitrogenase but is not involved in the mechanism of nitrogenase switch-off by urea.
    Canadian Journal of Microbiology 04/2008; 54(3):235-9. · 1.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The bacterium Herbaspirillum seropedicae is an endophytic diazotroph found in several plants, including economically important poaceous species. However, the mechanisms involved in the interaction between H. seropedicae and these plants are not completely characterized. We investigated the attachment of Herbaspirillum to maize roots and the invasion of the roots by this bacterium using H. seropedicae strain SMR1 transformed with the suicide plasmid pUTKandsRed, which carries a mini-Tn5 transposon containing the gene for the Discosoma red fluorescent protein (Dsred) constitutively expressed together with the kanamycin resistance gene. Integration of the mini-Tn5 into the bacterial chromosome yielded the mutant H. seropedicae strain RAM4 which was capable of expressing Dsred and could be observed on and inside fresh maize root samples. Confocal microscopy of maize roots inoculated with H. seropedicae three days after germination showed that H. seropedicae cell were attached to the root surface 30 min after inoculation, were visible in the internal tissues after twenty-four hours and in the endodermis, the central cylinder and xylem after three days.
    Genetics and Molecular Biology 01/2008; 31(4). · 0.74 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The NtrX protein has been identified as a transcriptional activator of genes involved in the metabolic control of alternative nitrogen sources, acting as a member of a two-component regulatory system. The in silico analysis of the NtrX amino acid sequence shows that this protein contains an N-terminal receiver domain, a central AAA+ superfamily domain and a C-terminal DNA binding domain. To over-express and purify this protein, the ntrX gene of Azospirillum brasilense lacking the first eight codons was cloned into the vector pET29a+. The NtrX protein was over-expressed as an S.Tag fusion protein induced by l-arabinose in the Escherichia coli strain BL21AI and purified by ion exchange and affinity chromatography. The ATPase activity of NtrX was measured by coupling the ATP conversion to ADP with NADH oxidation. The ATPase activity of NtrX was stimulated in the presence of A. brasilense sigma(54)/NtrC-dependent promoter of the glnBA gene. Phosphorylation by carbamyl-phosphate also stimulated ATPase, in a manner similar to the NtrC protein. Together our results suggest that NtrX is active in the phosphorylated form and that there may be a cross-talk between the NtrYX and NtrBC regulatory systems in A. brasilense.
    Protein Expression and Purification 07/2007; 53(2):302-8. · 1.43 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Random mutagenesis using transposons with promoterless reporter genes has been widely used to examine differential gene expression patterns in bacteria. Using this approach, we have identified 26 genes of the endophytic nitrogen-fixing bacterium Herbaspirillum seropedicae regulated in response to ammonium content in the growth medium. These include nine genes involved in the transport of nitrogen compounds, such as the high-affinity ammonium transporter AmtB, and uptake systems for alternative nitrogen sources; nine genes coding for proteins responsible for restoring intracellular ammonium levels through enzymatic reactions, such as nitrogenase, amidase, and arginase; and a third group includes metabolic switch genes, coding for sensor kinases or transcription regulation factors, whose role in metabolism was previously unknown. Also, four genes identified were of unknown function. This paper describes their involvement in response to ammonium limitation. The results provide a preliminary profile of the metabolic response of Herbaspirillum seropedicae to ammonium stress.
    Archives of Microbiology 06/2007; 187(5):379-86. · 1.91 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Sec-independent translocation systems have been characterised in Escherichia coli and other bacteria and differ from the Sec-dependent system by transporting fully folded proteins using the transmembrane proton electrochemical gradient. Proteins transported by this system bear a twin-arginine motif (tat) in the N-terminal signal peptide and include several cofactor-containing proteins. Azotobacter chroococcum strain (MCD124) has a soluble hydrogenase, which exhibited low O(2)-dependent H(2) uptake, and a shift in the pH of the culture to a more alkaline range during growth. We show that the DNA region capable of complementing this strain contains the tatABC genes and that mutations in the tatA gene reproduced the soluble hydrogenase and the culture pH shift phenotypes. We also show that insertional mutation in the tatC gene at a position corresponding to its C-terminal region had no effect on hydrogenase activity, but induced the pH shift of the culture. Sequence and mutagenesis analyses of this genomic region suggest that these genes form an operon that does not contain a tatD-like gene. A mutation in hupZ of the main hup gene region, coding for a possible b-type cytochrome also yielded a soluble hydrogenase, but not the pH-shift phenotype.
    Research in Microbiology 05/2007; 158(3):272-8. · 2.89 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Herbaspirillum seropedicae is an endophytic bacterium that fixes nitrogen under microaerophilic conditions. The putative promoter sequences glnAp1 (sigma70-dependent) and glnAp2 (sigma54), and two NtrC-binding sites were identified upstream from the glnA, ntrB and ntrC genes of this microorganism. To study their transcriptional regulation, we used lacZ fusions to the H. seropedicae glnA gene, and the glnA-ntrB and ntrB-ntrC intergenic regions. Expression of glnA was up-regulated under low ammonium, but no transcription activity was detected from the intergenic regions under any condition tested, suggesting that glnA, ntrB and ntrC are co-transcribed from the promoters upstream of glnA. Ammonium regulation was lost in the ntrC mutant strain. A point mutation was introduced in the conserved -25/-24 dinucleotide (GG-->TT) of the putative sigma54-dependent promoter (glnAp2). Contrary to the wild-type promoter, glnA expression with the mutant glnAp2 promoter was repressed in the wild-type strain under low ammonium levels, but this repression was abolished in an ntrC background. Together our results indicate that the H. seropedicae glnAntrBC operon is regulated from two functional promoters upstream from glnA, which are oppositely regulated by the NtrC protein.
    Canadian Journal of Microbiology 01/2007; 53(1):100-5. · 1.20 Impact Factor

Publication Stats

768 Citations
185.12 Total Impact Points

Institutions

  • 1991–2012
    • Universidade Federal do Paraná
      • • Department of Biochemistry
      • • Departamento de Farmacologia
      Curityba, Paraná, Brazil
  • 1982–2006
    • University of Sussex
      Brighton, England, United Kingdom
  • 1997–2000
    • Biotechnology and Biological Sciences Research Council
      Swindon, England, United Kingdom
  • 1999
    • John Innes Centre
      Norwich, England, United Kingdom
  • 1995
    • Federal University of Pará
      Pará, Pará, Brazil
  • 1994
    • McGill University
      • Department of Microbiology and Immunology
      Montréal, Quebec, Canada