Ignacio Ferreras

Johns Hopkins University, Baltimore, Maryland, United States

Are you Ignacio Ferreras?

Claim your profile

Publications (104)409.76 Total impact

  • [show abstract] [hide abstract]
    ABSTRACT: We analyse the stellar populations in the host galaxies of 53 X-ray selected optically dull active galactic nuclei (AGN) at 0.34<z<1.07 with ultra-deep (m=26.5) optical medium-band (R~50) photometry from the Survey for High-z Absorption Red and Dead Sources (SHARDS). The spectral resolution of SHARDS allows us to consistently measure the strength of the 4000 AA break, Dn(4000), a reliable age indicator for stellar populations. We confirm that most X-ray selected moderate-luminosity AGN (L_X<10^44 erg/s) are hosted by massive galaxies (typically M*>10^10.5 M_sun) and that the observed fraction of galaxies hosting an AGN increases with the stellar mass. A careful selection of random control samples of inactive galaxies allows us to remove the stellar mass and redshift dependencies of the AGN fraction to explore trends with several stellar age indicators. We find no significant differences in the distribution of the rest-frame U-V colour for AGN hosts and inactive galaxies, in agreement with previous results. However, we find significantly shallower 4000 AA breaks in AGN hosts, indicative of younger stellar populations. With the help of a model-independent determination of the extinction, we obtain extinction-corrected U-V colours and light-weighted average stellar ages. We find that AGN hosts have younger stellar populations and higher extinction compared to inactive galaxies with the same stellar mass and at the same redshift. We find a highly significant excess of AGN hosts with Dn(4000)~1.4 and light weighted average stellar ages of 300-500 Myr, as well as a deficit of AGN in intrinsic red galaxies. We interpret failure in recognising these trends in previous studies as a consequence of the balancing effect in observed colours of the age-extinction degeneracy.
    04/2014;
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: (Abridged) We combine NUV, optical and IR imaging of the nearby starburst galaxy M82 to explore the properties of the dust both in the interstellar medium of the galaxy and the dust entrained in the superwind. The three NUV filters of Swift/UVOT enable us to probe in detail the properties of the extinction curve in the region around the 2175A bump. The NUV colour-colour diagram strongly rules out a Calzetti-type law, which can either reflect intrinsic changes in the dust properties or in the star formation history compared to starbursts well represented by such an attenuation law. We emphasize that it is mainly in the NUV region where a standard Milky-Way-type law is preferred over a Calzetti law. The age and dust distribution of the stellar populations is consistent with the scenario of an encounter with M81 in the recent 400 Myr. The radial gradients of the NUV and optical colours in the superwind region support the hypothesis that the emission in the wind cone is driven by scattering from dust grains entrained in the ejecta. The observed wavelength dependence reveals either a grain size distribution $n(a)\propto a^{-2.5}$, where $a$ is the size of the grain, or a flatter distribution with a maximum size cutoff, suggesting that only small grains are entrained in the supernovae-driven wind.
    01/2014;
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: (Abridged) We probe the merging channel of massive galaxies over the z=0.3-1.3 redshift window by studying close pairs in a sample of 226 galaxies with stellar mass >1E11Msun, from the deep (m<26.5AB, 3 sigma) SHARDS survey. SHARDS provides medium band photometry equivalent to low-resolution optical spectra (R~50), allowing us to obtain extremely accurate photometric redshifts (|Dz|/(1+z)~0.8%, median) and to improve the constraints on the age distribution of the stellar populations. A strong correlation is found between the age difference of central and satellite galaxy and stellar mass ratio, from negligible age differences in major mergers to age differences ~4 Gyr for 1:100 minor mergers. This correlation is inherited from the general mass-age trend, suggesting that no significant bias is found between the satellites of massive centrals and galaxies with similar stellar mass in other environments. The dominant contributor to the growth of massive galaxies corresponds to mass ratios Omega=Msat/Mcen>0.3, followed by a decrease in the fractional mass growth rate linearly proportional to log Omega, at least down to Omega~0.01, suggesting a decreasing role of mergers involving low-mass satellites, especially if dynamical friction timescales are taken into account. A simple model results in an upper limit for the average mass growth rate of massive galaxies of DM/M/Dt~ 0.12+-0.06 per Gyr, over the z<1 range, with a ~60% fractional contribution from (major) mergers with Omega>0.3. The net mass growth from mergers in massive galaxies between z=1 and z=0 is M(z=0)/M(z=1)=1.9 (-0.5) (+0.7). These results suggest that the majority of the stellar mass contributed by satellites does not introduce significantly younger populations, in agreement with the small radial age gradients observed in present-day early-type galaxies.
    12/2013;
  • Dominik Leier, I. Ferreras, P. Saha
    [show abstract] [hide abstract]
    ABSTRACT: Both theoretical studies of structure formation and observations of X-ray emissions of hot halo gas find an inverse proportionality between the concentration of dark matter haloes and their virial mass. We present an alternative approach to explore the concentration of dark matter haloes over galaxy scales on a sample of 18 early-type lensing galaxies. Our c-Mvir relation is consistent with the X-ray analysis, extending towards lower virial masses, covering the range from 4e11 up to 5e12 Msol. A combination of the lensing analysis along with photometric data allows us to constrain the baryon fraction within a few effective radii, which is compared with prescriptions for adiabatic contraction (AC) of the dark matter haloes. We find that the standard methods for AC are strongly disfavoured, requiring additional mechanisms - such as mass loss during the contraction process - to play a role during the phases following the collapse of the haloes.
    07/2013;
  • Daniel Thomas, Anna Pasquali, Ignacio Ferreras
    Proceedings of the International Astronomical Union 07/2013;
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Chronos is our response to ESA's call for white papers to define the science for the future L2, L3 missions. Chronos targets the formation and evolution of galaxies, by collecting the deepest NIR spectroscopic data, from the formation of the first galaxies at z~10 to the peak of formation activity at z~1-3. The strong emission from the atmospheric background makes this type of survey impossible from a ground-based observatory. The spectra of galaxies represent the equivalent of a DNA fingerprint, containing information about the past history of star formation and chemical enrichment. The proposed survey will allow us to dissect the formation process of galaxies including the timescales of quenching triggered by star formation or AGN activity, the effect of environment, the role of infall/outflow processes, or the connection between the galaxies and their underlying dark matter haloes. To provide these data, the mission requires a 2.5m space telescope optimised for a campaign of very deep NIR spectroscopy. A combination of a high multiplex and very long integration times will result in the deepest, largest, high-quality spectroscopic dataset of galaxies from z=1 to 12, spanning the history of the Universe, from 400 million to 6 billion years after the big bang, i.e. covering the most active half of cosmic history.
    06/2013;
  • [show abstract] [hide abstract]
    ABSTRACT: Recent evidence based independently on spectral line strengths and dynamical modelling point towards a non-universal stellar Initial Mass Function (IMF), probably implying an excess of low-mass stars in elliptical galaxies with a high velocity dispersion. Here we show that a time-independent bottom-heavy IMF is compatible neither with the observed metal-rich populations found in giant ellipticals nor with the number of stellar remnants observed within these systems. We suggest a two-stage formation scenario involving a time-dependent IMF to reconcile these observational constraints. In this model, an early strong star-bursting stage with a top-heavy IMF is followed by a more prolonged stage with a bottom-heavy IMF. Such model is physically motivated by the fact that a sustained high star formation will bring the interstellar medium to a state of pressure, temperature and turbulence that can drastically alter the fragmentation of the gaseous component into small clumps, promoting the formation of low-mass stars. This toy model is in good agreement with the different observational constrains on massive elliptical galaxies, such as age, metallicity, alpha-enhancement, M/L, or the mass fraction of the stellar component in low-mass stars.
    Monthly Notices of the Royal Astronomical Society 06/2013; · 5.52 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: We report on results from the analysis of a stellar mass-selected (log M*>9.0) sample of 1644 galaxies at 0.65<z<1.1 with ultra-deep (m<26.5) optical medium-band (R~50) photometry from the Survey for High-z Absorption Red and Dead Sources (SHARDS). The spectral resolution of SHARDS allows us to consistently measure the strength of the 4000 Angstrom spectral break [Dn(4000), an excellent age indicator for the stellar populations of quiescent galaxies] for all galaxies at z~0.9 down to log M*9. The Dn(4000) index cannot be resolved from broad-band photometry, and measurements from optical spectroscopic surveys are typically limited to galaxies at least x10 more massive. When combined with the rest-frame U-V colour, Dn(4000) provides a powerful diagnostic of the extinction affecting the stellar population that is relatively insensitive to degeneracies with age, metallicity or star formation history. We use this novel approach to estimate de-reddened colours and light-weighted stellar ages for individual sources. We explore the relationships linking stellar mass, (U-V), and Dn(4000) for the sources in the sample, and compare them to those found in local galaxies. The main results are: a) both Dn(4000) and (U-V) correlate with M*. The dispersion in Dn(4000) values at a given M* increases with M*, while the dispersion for (U-V) decreases due to the higher average extinction prevalent in massive star-forming galaxies. b) for massive galaxies, we find a smooth transition between the blue cloud and red sequence in the intrinsic U-V colour, in contrast with other recent results. c) at a fixed stellar age, we find a positive correlation between extinction and stellar mass. d) the fraction of sources with declining or halted star formation increases steeply with the stellar mass, from ~5% at log M*~9.0-9.5 to ~80% at log M*>11, in agreement with downsizing scenarios.
    Monthly Notices of the Royal Astronomical Society 06/2013; 434(3). · 5.52 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: We present orbit-based dynamical models and stellar population analysis of galaxy SDSS J151741.75-004217.6, a low-redshift (z=0.116) early-type galaxy (ETG) which, for its moderate luminosity, has an exceptionally high velocity dispersion. We aim to determine the central black hole mass (M_bh), the i-band stellar mass-to-light ratio, and the low-mass slope of the initial mass function (IMF). Combining constraints from HST imaging and longslit kinematic data with those from fitting the SDSS spectrum with stellar populations models of varying IMF, we show that this galaxy has a large fraction of low-mass stars, significantly higher than implied even by a Salpeter IMF. We exclude a Chabrier/Kroupa as well as a unimodal (i.e. single-segment) IMF, while a bimodal (low-mass tapered) shape is consistent with the dynamical constraints. Thereby, our study demonstrates that a very bottom-heavy IMF can exist even in an L* ETG. We place an upper limit of ~10^{10.5}M_sun on M_bh, which still leaves open the possibility of an extremely massive BH.
    05/2013;
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: We perform a spectroscopic study to constrain the stellar Initial Mass Function (IMF) by using a large sample of 24,781 early-type galaxies from the SDSS-based SPIDER survey. Clear evidence is found of a trend between IMF and central velocity dispersion, sigma0, evolving from a standard Kroupa/Chabrier IMF at 100km/s towards a more bottom-heavy IMF with increasing sigma0, becoming steeper than the Salpeter function at sigma0>220km/s. We analyze a variety of spectral indices, corrected to solar scale by means of semi-empirical correlations, and fitted simultaneously with extended MILES (MIUSCAT) stellar population models. Our analysis suggests that sigma0, rather than [alpha/Fe], drives the IMF variation. Although our analysis cannot discriminate between a single power-law (unimodal) and a low-mass (<0.5MSun) tapered (bimodal) IMF, we can robustly constrain the fraction in low-mass stars at birth, that is found to increase from 20% at sigma0~100km/s, up to 80% at sigma0~300km/s. Additional constraints can be provided with stellar mass-to-light (M/L) ratios: unimodal models predict M/L significantly larger than dynamical M/L, across the whole sigma0 range, whereas a bimodal IMF is compatible. Our results are robust against individual abundance variations. No significant variation is found in Na and Ca in addition to the expected change from the correlation between [alpha/Fe] and sigma0. [Abridged]
    Monthly Notices of the Royal Astronomical Society 05/2013; 433(4). · 5.52 Impact Factor
  • Ignacio Ferreras, Asmus Böhm, Bodo Ziegler, Joseph Silk
    [show abstract] [hide abstract]
    ABSTRACT: We analyse the Tully-Fisher relation at moderate redshift from the point of view of the underlying stellar populations, by comparing optical and NIR photometry with a phenomenological model that combines population synthesis with a simple prescription for chemical enrichment. The sample comprises 108 late-type galaxies extracted from the FORS Deep Field (FDF) and William Herschel Deep Field (WHDF) surveys at z<1 (median redshift z=0.45). A correlation is found between stellar mass and the parameters that describe the star formation history, with massive galaxies forming their populations early (zFOR~3), with star formation timescales, tau1~4Gyr; although with very efficient chemical enrichment timescales (tau2~1Gyr). In contrast, the stellar-to-dynamical mass ratio - which, in principle, would track the efficiency of feedback in the baryonic processes driving galaxy formation - does not appear to correlate with the model parameters. On the Tully-Fisher plane, no significant age segregation is found at fixed circular speed, whereas at fixed stellar-to-dynamical mass fraction, age splits the sample, with older galaxies having faster circular speeds at fixed Ms/Mdyn. Although our model does not introduce any prior constraint on dust reddening, we obtain a strong correlation between colour excess and stellar mass.
    Monthly Notices of the Royal Astronomical Society 04/2013; · 5.52 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: We present observations of a luminous galaxy at redshift z=6.573 --- the end of the reioinization epoch --- which has been spectroscopically confirmed twice. The first spectroscopic confirmation comes from slitless HST ACS grism spectra from the PEARS survey (Probing Evolution And Reionization Spectroscopically), which show a dramatic continuum break in the spectrum at restframe 1216 A wavelength. The second confirmation is done with Keck + DEIMOS. The continuum is not clearly detected with ground-based spectra, but high wavelength resolution enables the Lyman alpha emission line profile to be determined. We compare the line profile to composite line profiles at redshift z=4.5. The Lyman alpha line profile shows no signature of a damping wing attenuation, confirming that the intergalactic gas is ionized at redshift z=6.57. Spectra of Lyman breaks at yet higher redshifts will be possible using comparably deep observations with IR-sensitive grisms, even at redshifts where Lyman alpha is too attenuated by the neutral IGM to be detectable using traditional spectroscopy from the ground.
    The Astrophysical Journal 02/2013; 773(1). · 6.73 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: [Abridged] We present an integrated photometric spectral energy distribution (SED) of the Magellanic-type galaxy NGC 4449 from the far-ultraviolet (UV) to the submillimetre, including new observations acquired by the Herschel Space Observatory. We include integrated UV photometry from the Swift Ultraviolet and Optical Telescope using a measurement technique which is appropriate for extended sources with coincidence loss. In this paper, we examine the available multiwavelength data to infer a range of ages, metallicities and star formation rates for the underlying stellar populations, as well as the composition and the total mass of dust in NGC 4449. We present an iterative scheme, which allows us to build an in-depth and multicomponent representation of NGC 4449 `bottom-up', taking advantage of the broad capabilities of the photoionization and radiative transfer code MOCASSIN (MOnte CArlo SimulationS of Ionized Nebulae). We fit the observed SED, the global ionization structure and the emission line intensities, and infer a recent SFR of 0.4 Msolar/yr and a total stellar mass of approximately 1e9 Msolar emitting with a bolometric luminosity of 5.7e9 Lsolar. Our fits yield a total dust mass of 2.9e6 Msolar including 2 per cent attributed to polycyclic aromatic hydrocarbons. We deduce a dust to gas mass ratio of 1/190 within the modelled region. While we do not consider possible additional contributions from even colder dust, we note that including the extended HI envelope and the molecular gas is likely to bring the ratio down to as low as ~ 1/800.
    Monthly Notices of the Royal Astronomical Society 02/2013; 431(3). · 5.52 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Radial trends of stellar populations in galaxies provide a valuable tool to understand the mechanisms of galaxy growth. In this paper, we present the first comprehensive analysis of optical-optical and optical-NIR colours, as a function of galaxy mass, out to the halo region (8Re) of early-type galaxies (ETGs). We select a sample of 674 massive ETGs (M*>3x10^10MSun) from the SDSS-based SPIDER survey. By comparing with a large range of population synthesis models, we derive robust constraints on the radial trends in age and metallicity. Metallicity is unambiguously found to decrease outwards, with a measurable steepening of the slope in the outer regions (Re<R<8Re). The gradients in stellar age are found to be more sensitive to the models used, but in general, the outer regions of ETGs feature older populations compared to the cores. This trend is strongest for the most massive galaxies in our sample (M*>10^11MSun). Furthermore, when segregating with respect to large scale environment, the age gradient is more significant in ETGs residing in higher density regions. These results shed light on the processes leading from the formation of the central core to the growth of the stellar envelope of massive galaxies. The fact that the populations in the outer regions are older and more metal-poor than in the core suggests a process whereby the envelope of massive galaxies is made up of accreted small satellites (i.e. minor mergers) whose stars were born during the first stages of galaxy formation.
    Monthly Notices of the Royal Astronomical Society 08/2012; 426(3). · 5.52 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: (Abridged) We present the Survey for High-z Absorption Red and Dead Sources (SHARDS), an ESO/GTC Large Program carried out with GTC/OSIRIS. SHARDS is an ultra-deep optical spectro-photometric survey of the GOODS-N field (130 arcmin^2) at wavelengths 500 to 950 nm and using 24 contiguous medium-band filters (spectral resolution R 50). The data reach 26.5 mag (>3-sigma level) with sub-arcsec seeing in all bands. SHARDS main goal is obtaining accurate physical properties of interm- and high-z galaxies using well-sampled optical SEDs with sufficient spectral resolution to measure absorption and emission features. Among the different populations of high-z galaxies, SHARDS principal targets are massive quiescent galaxies at z>1. In this paper, we outline the observational strategy and include a detailed discussion of the special reduction and calibration procedures applied to the GTC/OSIRIS data. We present science demonstration results about the detection and study of emission-line galaxies (star-forming and AGN) at z=0-5. We also analyze the SEDs for a sample of 27 quiescent massive galaxies at 1.0<z<1.4. We discuss on the improvements introduced by the SHARDS dataset in the analysis of their SFH and stellar properties. We discuss the systematics arising from the use of different stellar population libraries. We find that the UV-to-MIR SEDs of the massive quiescent galaxies at z=1.0-1.5 are well described by an exponential decaying SFH with scale tau=100-200 Myr, age 1.5-2.0 Gyr, solar or slightly sub-solar metallicity, and moderate extinction, A(V)~0.5 mag. We also find that galaxies with masses above M* are typically older than lighter galaxies, as expected in a downsizing scenario of galaxy formation. This trend is, however, model dependent, i.e., it is significantly more evident in the results obtained with some stellar population synthesis libraries and almost absent in others.
    The Astrophysical Journal 07/2012; 762(1). · 6.73 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: An essential component of galaxy formation theory is the stellar initial mass function (IMF), that describes the parent distribution of stellar mass in star forming regions. We present observational evidence in a sample of early-type galaxies (ETGs) of a tight correlation between central velocity dispersion and the strength of several absorption features sensitive to the presence of low-mass stars. Our sample comprises ~40,000 ETGs from the SPIDER survey (z<0.1). The data, extracted from the Sloan Digital Sky Survey, are combined, rejecting both noisy data, and spectra with contamination from telluric lines, resulting in a set of 18 stacked spectra at high signal-to-noise ratio (S/N> 400 per A). A combined analysis of IMF-sensitive line strengths and spectral fitting is performed with the latest state-of the art population synthesis models (an extended version of the MILES models). A significant trend is found between IMF slope and velocity dispersion, towards an excess of low-mass stars in the most massive galaxies. Although we emphasize that accurate values of the IMF slope will require a detailed analysis of chemical composition (such as [a/Fe] or even individual element abundance ratios), the observed trends suggest that low-mass ETGs are better fit by a Kroupa-like IMF, whereas massive galaxies require bottom-heavy IMFs, exceeding the Salpeter slope at velocity dispersions above 200km/s.
    Monthly Notices of the Royal Astronomical Society 06/2012; 429(1). · 5.52 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: The validity of MOND and TeVeS models of modified gravity has been recently tested by using lensing techniques, with the conclusion that a non-trivial component in the form of dark matter is needed in order to match the observations. In this work those analyses are extended by comparing lensing to stellar masses for a sample of nine strong gravitational lenses that probe galactic scales. The sample is extracted from a recent work that presents the mass profile out to a few effective radii, therefore reaching into regions that are dominated by dark matter in the standard (general relativity) scenario. A range of interpolating functions are explored to test the validity of MOND/TeVeS in these systems. Out of the nine systems, there are five robust candidates with a significant excess (higher that 50%) of lensing mass with respect to stellar mass, irrespective of the stellar initial mass function. One of these lenses (Q0957) is located at the centre of a galactic cluster. This system might be accommodated in MOND/TeVeS via the addition of a hot component, like a 2 eV neutrino, that contribute over cluster scales. However, the other four robust candidates (LBQS1009, HE1104, B1600, HE2149) are located in field/group regions, so that a cold component (CDM) would be required even within the MOND/TeVeS framework. Our results therefore do not support recent claims that these alternative scenarios to CDM can survive astrophysical data.
    Physical review D: Particles and fields 05/2012;
  • Source
    Dominik Leier, Ignacio Ferreras, Prasenjit Saha
    [show abstract] [hide abstract]
    ABSTRACT: Theoretical studies of structure formation find an inverse proportionality between the concentration of dark matter haloes and virial mass. This trend has been recently confirmed for virial masses Mvir > ~6e12 Msun by the observation of the X-ray emission from the hot halo gas. We present an alternative approach to this problem, exploring the concentration of dark matter haloes over galaxy scales on a sample of 18 early-type systems. Our c-Mvir relation is consistent with the X-ray analysis, extending towards lower virial masses, covering the range from ~4e11 Msun up to 5e12 Msun. A combination of the lensing analysis along with photometric data allows us to constrain the baryon fraction within a few effective radii, which is compared with prescriptions for adiabatic contraction (AC) of the dark matter haloes. We find that the standard methods for AC are strongly disfavored, requiring additional mechanisms -- such as mass loss during the contraction process -- to play a role during the phases following the collapse of the haloes.
    Monthly Notices of the Royal Astronomical Society 04/2012; 424(1). · 5.52 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: We study the star forming regions in the spiral galaxy NGC4321, taking advantage of the spatial resolution (2.5 arcsec FWHM) of the Swift/UVOT camera and the availability of three UV passbands in the region 1600-3000 A, in combination with optical and IR imaging from SDSS, KPNO/Ha and Spitzer/IRAC, to obtain a catalogue of 787 star forming regions out to three disc scale lengths. We determine the properties of the young stellar component and its relationship with the spiral arms. The Ha luminosities of the sources have a strong decreasing radial trend, suggesting more massive star forming regions in the central part of the galaxy. When segregated with respect to NUV-optical colour, blue sources have a significant excess of flux in the IR at 8 micron, revealing the contribution from PAHs, although the overall reddening of these sources stays below E(B-V)=0.2 mag. The distribution of distances to the spiral arms is compared for subsamples selected according to Ha luminosity, NUV-optical colour, or ages derived from a population synthesis model. An offset is expected between these subsamples as a function of radius if the pattern speed of the spiral arm were constant - as predicted by classic density wave theory. No significant offsets are found, favouring instead a mechanism where the pattern speed has a radial dependence.
    Monthly Notices of the Royal Astronomical Society 04/2012; 424(3). · 5.52 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Galaxies are found to obey scaling relations between a number of observables. These relations follow different trends at the low- and the high-mass ends. The processes driving the curvature of scaling relations remain uncertain. In this letter, we focus on the specific family of early-type galaxies, deriving the star formation histories of a complete sample of visually classified galaxies from SDSS-DR7 over the redshift range 0.01<z<0.025, covering a stellar mass interval from 10^9 to 3 x 10^11 Msun. Our sample features the characteristic "knee" in the surface brightness vs. mass distribution at Mstar~3 x 10^10 Msun. We find a clear difference between the age and metallicity distributions of the stellar populations above and beyond this knee, which suggests a sudden transition from a constant, highly efficient mode of star formation in high-mass galaxies, gradually decreasing towards the low-mass end of the sample. At fixed mass, our early-type sample is more efficient in building up the stellar content at early times in comparison to the general population of galaxies, with half of the stars already in place by redshift z~2 for all masses. The metallicity-age trend in low-mass galaxies is not compatible with infall of metal-poor gas, suggesting instead an outflow-driven relation.
    The Astrophysical Journal Letters 03/2012; 752(2). · 6.35 Impact Factor

Publication Stats

434 Citations
409.76 Total Impact Points

Institutions

  • 2003–2013
    • Johns Hopkins University
      • Department of Physics and Astronomy
      Baltimore, Maryland, United States
  • 2012
    • Complutense University of Madrid
      • Department of Atomic, Molecular and Nuclear Physics
      Madrid, Madrid, Spain
  • 2005–2012
    • University College London
      • Department of Physics and Astronomy
      Londinium, England, United Kingdom
  • 2009
    • University of California, Riverside
      • Department of Physics and Astronomy
      Riverside, California, United States
  • 2006–2008
    • King's College London
      • Department of Physics
      London, ENG, United Kingdom
  • 2001–2008
    • University of Oxford
      • Department of Physics
      Oxford, ENG, United Kingdom
  • 1998
    • Instituto de Física de Cantabria
      Santander, Cantabria, Spain