Ignacio Ferreras

University College London, Londinium, England, United Kingdom

Are you Ignacio Ferreras?

Claim your profile

Publications (120)462.74 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Variations in the stellar initial mass function (IMF) have been invoked to explain the spectroscopic and dynamical properties of early-type galaxies. However, no observations have yet been able to disentangle the physical driver. We analyse here a sample of 24 early-type galaxies drawn from the CALIFA survey, deriving in a homogeneous way their stellar population and kinematic properties. We find that the local IMF is tightly related to the local metallicity, becoming more bottom-heavy towards metal-rich populations. Our result, combined with the galaxy mass-metallicity relation, naturally explains previous claims of a galaxy mass-IMF relation, derived from non-IFU spectra. If we assume that - within the star formation environment of early-type galaxies - metallicity is the main driver of IMF variations, a significant revision of the interpretation of galaxy evolution observables is necessary.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Initial Mass Function (IMF) of early-type galaxies (ETGs) has been found to feature systematic variations by both dynamical and spectroscopic studies. In particular, spectral line strengths, based on gravity-sensitive features, suggest an excess of low-mass stars in massive ETGs, i.e. a bottom-heavy IMF. The physical drivers of IMF variations are currently unknown. The abundance ratio of alpha elements, such as [Mg/Fe], has been suggested as a possible driver of the IMF changes, although dynamical constraints do not support this claim. In this letter, we take advantage of the large SDSS database. Our sample comprises 24,781 high-quality spectra, covering a large range in velocity dispersion (100<sigma0<320 km/s) and abundance ratio (-0.1<[Mg/Fe]<+0.4). The large volume of data allows us to stack the spectra at fixed values of sigma0 and [Mg/Fe]. Our analysis -- based on gravity-sensitive line strengths -- gives a strong correlation with central velocity dispersion and a negligible variation with [Mg/Fe] at fixed sigma0. This result is robust against individual elemental abundance variations, and seems not to raise any apparent inconsistency with the alternative method based on galaxy dynamics.
    Monthly Notices of the Royal Astronomical Society Letters 02/2015; 449(1). DOI:10.1093/mnrasl/slv029
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Spectroscopic analyses of gravity-sensitive line strengths give growing evidence towards an excess of low-mass stars in massive early-type galaxies (ETGs). Such a scenario requires a bottom-heavy initial mass function (IMF). However, strong constraints can be imposed if we take into account galactic chemical enrichment. We extend the analysis of Weidner et al. and consider the functional form of bottom-heavy IMFs used in recent works, where the high-mass end slope is kept fixed to the Salpeter value, and a free parameter is introduced to describe the slope at stellar masses below some pivot mass scale (M<MP=0.5Msun). We find that no such time-independent parameterisation is capable to reproduce the full set of constraints in the stellar populations of massive ETGs - resting on the assumption that the analysis of gravity-sensitive line strengths leads to a mass fraction at birth in stars with mass M<0.5Msun above 60%. Most notably, the large amount of metal-poor gas locked in low-mass stars during the early, strong phases of star formation results in average stellar metallicities [M/H]<-0.6, well below the solar value. The conclusions are unchanged if either the low-mass end cutoff, or the pivot mass are left as free parameters, strengthening the case for a time-dependent IMF.
    Monthly Notices of the Royal Astronomical Society Letters 01/2015; 448(1). DOI:10.1093/mnrasl/slv003
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We explore the stellar initial mass function (IMF) of a sample of 49 massive quiescent galaxies (MQGs) at 0.9 < z < 1.5. We base our analysis on intermediate resolution spectro-photometric data in the GOODS-N field taken in the near-infrared and optical with the Hubble Space Telescope Wide Field Camera 3 G141 grism and the Survey for High-z Absorption Red and Dead Sources. To constrain the slope of the IMF, we have measured the TiO2 spectral feature, whose strength depends strongly on the content of low-mass stars, as well as on stellar age. Using ultraviolet to near-infrared individual and stacked spectral energy distributions, we have independently estimated the stellar ages of our galaxies. Knowing the age of the stellar population, we interpret the strong differences in the TiO2 feature as an IMF variation. In particular, for the heaviest z ~ 1 MQGs (M > 1011 M ☉), we find an average age of 1.7 ± 0.3 Gyr and a bottom-heavy IMF (Γ b = 3.2 ± 0.2). Lighter MQGs (2 × 1010 < M < 1011 M ☉) at the same redshift are younger on average (1.0 ± 0.2 Gyr) and present a shallower IMF slope (Γ _b=2.7+0.3-0.4). Our results are in good agreement with the findings about the IMF slope in early-type galaxies of similar mass in the present-day universe. This suggests that the IMF, a key characteristic of the stellar populations in galaxies, is bottom-heavier for more massive galaxies and has remained unchanged in the last ~8 Gyr.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We study the total density distribution in the central regions (~ 1 effective radius, $R_e$) of early-type galaxies (ETGs), using data from SPIDER and $\rm ATLAS^{3D}$. Our analysis extends the range of galaxy stellar mass ($M_{\star}$) probed by gravitational lensing, down to ~ $10^{10}\, \rm M_{\odot}$. We model each galaxy with two components (dark matter halo + stars), exploring different assumptions for the dark matter (DM) halo profile (i.e. NFW, NFW-contracted, and Burkert profiles), and leaving stellar mass-to-light ($M_{\star}/L$) ratios as free fitting parameters to the data. For all plausible halo models, the best-fitting $M_{\star}/L$, normalized to that for a Chabrier IMF, increases systematically with galaxy size and mass. For an NFW profile, the slope of the total mass profile is non-universal, independently of several ingredients in the modeling (e.g., halo contraction, anisotropy, and rotation velocity in ETGs). For the most massive ($M_{\star}$ ~ $10^{11.5} \, M_{\odot}$) or largest ($R_{\rm e}$ ~ $15 \, \rm kpc$) ETGs, the profile is isothermal in the central regions (~$R_{\rm e}/2$), while for the low-mass ($M_{\star}$ ~ $10^{10.2} \, M_\odot$) or smallest ($R_{\rm e}$ ~ $0.5 \, \rm kpc$) systems, the profile is steeper than isothermal, with slopes similar to those for a constant-$M/L$ profile. For a steeper concentration-mass relation than that expected from simulations, the correlation of density slope with galaxy mass tends to flatten, while correlations with $R_{\rm e}$ and velocity dispersions are more robust. Our results clearly point to a "non-homology" in the total mass distribution of ETGs, which simulations of galaxy formation suggest may be related to a varying role of dissipation with galaxy mass.
    Monthly Notices of the Royal Astronomical Society 09/2014; 445(1). DOI:10.1093/mnras/stu1616
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A detailed analysis of how environment affects the star formation history of early-type galaxies (ETGs) is undertaken via high signal to noise ratio stacked spectra obtained from a sample of 20,977 ETGs (morphologically selected) from the SDSS-based SPIDER survey. Two major parameters are considered for the study: the central velocity dispersion (sigma), which relates to local drivers of star formation, and the mass of the host halo, which relates to environment-related effects. In addition, we separate the sample between centrals (the most massive galaxy in a halo) and satellites. We derive trends of age, metallicity, and [alpha/Fe] enhancement, with sigma. We confirm that the major driver of stellar population properties in ETGs is velocity dispersion, with a second-order effect associated to the central/satellite nature of the galaxy. No environmental dependence is detected for satellite ETGs, except at low sigma - where satellites in groups or in the outskirts of clusters tend to be younger than those in the central regions of clusters. In contrast, the trends for centrals show a significant dependence on halo mass. Central ETGs in groups (i.e. with a halo mass >10^12.5 M_Sun) have younger ages, lower [alpha/Fe], and higher internal reddening, than "isolated" systems (i.e. centrals residing in low-mass, <10^12.5 M_Sun, halos). Our findings imply that central ETGs in groups formed their stellar component over longer time scales than "isolated" centrals, mainly because of gas-rich interactions with their companion galaxies.
    Monthly Notices of the Royal Astronomical Society 08/2014; 445(2). DOI:10.1093/mnras/stu1626
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The hypothesis of a universal initial mass function (IMF) -- motivated by observations in nearby stellar systems -- has been recently challenged by the discovery of an IMF systematic variation with the central velocity dispersion, {\sigma}, of early-type galaxies (ETGs), towards an excess of low-mass stars in high {\sigma} galaxies. This trend has been found to hold for the central regions of ETGs, and remains unexplained at the present. To shed new lights on it, we have obtained new, extremely deep, spectroscopy, for three nearby ETGs, two with high {\sigma} (~300 km/s), and one low-mass system, with {\sigma} ~ 100 km/s. From the analysis of IMF-sensitive spectral features, we find that the IMF depends significantly on galactocentric distance in the massive ETGs, with the enhanced fraction of low-mass stars confined to their central regions. For the low-{\sigma} galaxy, no significant radial gradient is detected in the IMF, which is well described by a Milky-Way-like distribution at all radii. Such a result suggests that the IMF should be regarded as a local (rather than global) galaxy property, and suggests a significant difference in the formation process of the core and the outskirts of massive galaxies.
    Monthly Notices of the Royal Astronomical Society 04/2014; 447(2). DOI:10.1093/mnras/stu2480
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We analyse the stellar populations in the host galaxies of 53 X-ray selected optically dull active galactic nuclei (AGN) at 0.34<z<1.07 with ultra-deep (m=26.5) optical medium-band (R~50) photometry from the Survey for High-z Absorption Red and Dead Sources (SHARDS). The spectral resolution of SHARDS allows us to consistently measure the strength of the 4000 AA break, Dn(4000), a reliable age indicator for stellar populations. We confirm that most X-ray selected moderate-luminosity AGN (L_X<10^44 erg/s) are hosted by massive galaxies (typically M*>10^10.5 M_sun) and that the observed fraction of galaxies hosting an AGN increases with the stellar mass. A careful selection of random control samples of inactive galaxies allows us to remove the stellar mass and redshift dependencies of the AGN fraction to explore trends with several stellar age indicators. We find no significant differences in the distribution of the rest-frame U-V colour for AGN hosts and inactive galaxies, in agreement with previous results. However, we find significantly shallower 4000 AA breaks in AGN hosts, indicative of younger stellar populations. With the help of a model-independent determination of the extinction, we obtain extinction-corrected U-V colours and light-weighted average stellar ages. We find that AGN hosts have younger stellar populations and higher extinction compared to inactive galaxies with the same stellar mass and at the same redshift. We find a highly significant excess of AGN hosts with Dn(4000)~1.4 and light weighted average stellar ages of 300-500 Myr, as well as a deficit of AGN in intrinsic red galaxies. We interpret failure in recognising these trends in previous studies as a consequence of the balancing effect in observed colours of the age-extinction degeneracy.
    Monthly Notices of the Royal Astronomical Society 04/2014; 443(4). DOI:10.1093/mnras/stu1413
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: (Abridged) We combine NUV, optical and IR imaging of the nearby starburst galaxy M82 to explore the properties of the dust both in the interstellar medium of the galaxy and the dust entrained in the superwind. The three NUV filters of Swift/UVOT enable us to probe in detail the properties of the extinction curve in the region around the 2175A bump. The NUV colour-colour diagram strongly rules out a Calzetti-type law, which can either reflect intrinsic changes in the dust properties or in the star formation history compared to starbursts well represented by such an attenuation law. We emphasize that it is mainly in the NUV region where a standard Milky-Way-type law is preferred over a Calzetti law. The age and dust distribution of the stellar populations is consistent with the scenario of an encounter with M81 in the recent 400 Myr. The radial gradients of the NUV and optical colours in the superwind region support the hypothesis that the emission in the wind cone is driven by scattering from dust grains entrained in the ejecta. The observed wavelength dependence reveals either a grain size distribution $n(a)\propto a^{-2.5}$, where $a$ is the size of the grain, or a flatter distribution with a maximum size cutoff, suggesting that only small grains are entrained in the supernovae-driven wind.
    Monthly Notices of the Royal Astronomical Society 01/2014; 440(1). DOI:10.1093/mnras/stu185
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: (Abridged) We probe the merging channel of massive galaxies over the z=0.3-1.3 redshift window by studying close pairs in a sample of 226 galaxies with stellar mass >1E11Msun, from the deep (m<26.5AB, 3 sigma) SHARDS survey. SHARDS provides medium band photometry equivalent to low-resolution optical spectra (R~50), allowing us to obtain extremely accurate photometric redshifts (|Dz|/(1+z)~0.8%, median) and to improve the constraints on the age distribution of the stellar populations. A strong correlation is found between the age difference of central and satellite galaxy and stellar mass ratio, from negligible age differences in major mergers to age differences ~4 Gyr for 1:100 minor mergers. This correlation is inherited from the general mass-age trend, suggesting that no significant bias is found between the satellites of massive centrals and galaxies with similar stellar mass in other environments. The dominant contributor to the growth of massive galaxies corresponds to mass ratios Omega=Msat/Mcen>0.3, followed by a decrease in the fractional mass growth rate linearly proportional to log Omega, at least down to Omega~0.01, suggesting a decreasing role of mergers involving low-mass satellites, especially if dynamical friction timescales are taken into account. A simple model results in an upper limit for the average mass growth rate of massive galaxies of DM/M/Dt~ 0.12+-0.06 per Gyr, over the z<1 range, with a ~60% fractional contribution from (major) mergers with Omega>0.3. The net mass growth from mergers in massive galaxies between z=1 and z=0 is M(z=0)/M(z=1)=1.9 (-0.5) (+0.7). These results suggest that the majority of the stellar mass contributed by satellites does not introduce significantly younger populations, in agreement with the small radial age gradients observed in present-day early-type galaxies.
    Monthly Notices of the Royal Astronomical Society 12/2013; 444(1). DOI:10.1093/mnras/stu1425
  • Dominik Leier, I. Ferreras, P. Saha
    [Show abstract] [Hide abstract]
    ABSTRACT: Both theoretical studies of structure formation and observations of X-ray emissions of hot halo gas find an inverse proportionality between the concentration of dark matter haloes and their virial mass. We present an alternative approach to explore the concentration of dark matter haloes over galaxy scales on a sample of 18 early-type lensing galaxies. Our c-Mvir relation is consistent with the X-ray analysis, extending towards lower virial masses, covering the range from 4e11 up to 5e12 Msol. A combination of the lensing analysis along with photometric data allows us to constrain the baryon fraction within a few effective radii, which is compared with prescriptions for adiabatic contraction (AC) of the dark matter haloes. We find that the standard methods for AC are strongly disfavoured, requiring additional mechanisms - such as mass loss during the contraction process - to play a role during the phases following the collapse of the haloes.
  • Daniel Thomas, Anna Pasquali, Ignacio Ferreras
    Proceedings of the International Astronomical Union 07/2013;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chronos is our response to ESA's call for white papers to define the science for the future L2, L3 missions. Chronos targets the formation and evolution of galaxies, by collecting the deepest NIR spectroscopic data, from the formation of the first galaxies at z~10 to the peak of formation activity at z~1-3. The strong emission from the atmospheric background makes this type of survey impossible from a ground-based observatory. The spectra of galaxies represent the equivalent of a DNA fingerprint, containing information about the past history of star formation and chemical enrichment. The proposed survey will allow us to dissect the formation process of galaxies including the timescales of quenching triggered by star formation or AGN activity, the effect of environment, the role of infall/outflow processes, or the connection between the galaxies and their underlying dark matter haloes. To provide these data, the mission requires a 2.5m space telescope optimised for a campaign of very deep NIR spectroscopy. A combination of a high multiplex and very long integration times will result in the deepest, largest, high-quality spectroscopic dataset of galaxies from z=1 to 12, spanning the history of the Universe, from 400 million to 6 billion years after the big bang, i.e. covering the most active half of cosmic history.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent evidence based independently on spectral line strengths and dynamical modelling point towards a non-universal stellar Initial Mass Function (IMF), probably implying an excess of low-mass stars in elliptical galaxies with a high velocity dispersion. Here we show that a time-independent bottom-heavy IMF is compatible neither with the observed metal-rich populations found in giant ellipticals nor with the number of stellar remnants observed within these systems. We suggest a two-stage formation scenario involving a time-dependent IMF to reconcile these observational constraints. In this model, an early strong star-bursting stage with a top-heavy IMF is followed by a more prolonged stage with a bottom-heavy IMF. Such model is physically motivated by the fact that a sustained high star formation will bring the interstellar medium to a state of pressure, temperature and turbulence that can drastically alter the fragmentation of the gaseous component into small clumps, promoting the formation of low-mass stars. This toy model is in good agreement with the different observational constrains on massive elliptical galaxies, such as age, metallicity, alpha-enhancement, M/L, or the mass fraction of the stellar component in low-mass stars.
    Monthly Notices of the Royal Astronomical Society 06/2013; 435(3). DOI:10.1093/mnras/stt1445
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report on results from the analysis of a stellar mass-selected (log M*>9.0) sample of 1644 galaxies at 0.65<z<1.1 with ultra-deep (m<26.5) optical medium-band (R~50) photometry from the Survey for High-z Absorption Red and Dead Sources (SHARDS). The spectral resolution of SHARDS allows us to consistently measure the strength of the 4000 Angstrom spectral break [Dn(4000), an excellent age indicator for the stellar populations of quiescent galaxies] for all galaxies at z~0.9 down to log M*9. The Dn(4000) index cannot be resolved from broad-band photometry, and measurements from optical spectroscopic surveys are typically limited to galaxies at least x10 more massive. When combined with the rest-frame U-V colour, Dn(4000) provides a powerful diagnostic of the extinction affecting the stellar population that is relatively insensitive to degeneracies with age, metallicity or star formation history. We use this novel approach to estimate de-reddened colours and light-weighted stellar ages for individual sources. We explore the relationships linking stellar mass, (U-V), and Dn(4000) for the sources in the sample, and compare them to those found in local galaxies. The main results are: a) both Dn(4000) and (U-V) correlate with M*. The dispersion in Dn(4000) values at a given M* increases with M*, while the dispersion for (U-V) decreases due to the higher average extinction prevalent in massive star-forming galaxies. b) for massive galaxies, we find a smooth transition between the blue cloud and red sequence in the intrinsic U-V colour, in contrast with other recent results. c) at a fixed stellar age, we find a positive correlation between extinction and stellar mass. d) the fraction of sources with declining or halted star formation increases steeply with the stellar mass, from ~5% at log M*~9.0-9.5 to ~80% at log M*>11, in agreement with downsizing scenarios.
    Monthly Notices of the Royal Astronomical Society 06/2013; 434(3). DOI:10.1093/mnras/stt1165
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present orbit-based dynamical models and stellar population analysis of galaxy SDSS J151741.75-004217.6, a low-redshift (z=0.116) early-type galaxy (ETG) which, for its moderate luminosity, has an exceptionally high velocity dispersion. We aim to determine the central black hole mass (M_bh), the i-band stellar mass-to-light ratio, and the low-mass slope of the initial mass function (IMF). Combining constraints from HST imaging and longslit kinematic data with those from fitting the SDSS spectrum with stellar populations models of varying IMF, we show that this galaxy has a large fraction of low-mass stars, significantly higher than implied even by a Salpeter IMF. We exclude a Chabrier/Kroupa as well as a unimodal (i.e. single-segment) IMF, while a bimodal (low-mass tapered) shape is consistent with the dynamical constraints. Thereby, our study demonstrates that a very bottom-heavy IMF can exist even in an L* ETG. We place an upper limit of ~10^{10.5}M_sun on M_bh, which still leaves open the possibility of an extremely massive BH.
    Monthly Notices of the Royal Astronomical Society Letters 05/2013; 434(1). DOI:10.1093/mnrasl/slt070
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We perform a spectroscopic study to constrain the stellar Initial Mass Function (IMF) by using a large sample of 24,781 early-type galaxies from the SDSS-based SPIDER survey. Clear evidence is found of a trend between IMF and central velocity dispersion, sigma0, evolving from a standard Kroupa/Chabrier IMF at 100km/s towards a more bottom-heavy IMF with increasing sigma0, becoming steeper than the Salpeter function at sigma0>220km/s. We analyze a variety of spectral indices, corrected to solar scale by means of semi-empirical correlations, and fitted simultaneously with extended MILES (MIUSCAT) stellar population models. Our analysis suggests that sigma0, rather than [alpha/Fe], drives the IMF variation. Although our analysis cannot discriminate between a single power-law (unimodal) and a low-mass (<0.5MSun) tapered (bimodal) IMF, we can robustly constrain the fraction in low-mass stars at birth, that is found to increase from 20% at sigma0~100km/s, up to 80% at sigma0~300km/s. Additional constraints can be provided with stellar mass-to-light (M/L) ratios: unimodal models predict M/L significantly larger than dynamical M/L, across the whole sigma0 range, whereas a bimodal IMF is compatible. Our results are robust against individual abundance variations. No significant variation is found in Na and Ca in addition to the expected change from the correlation between [alpha/Fe] and sigma0. [Abridged]
    Monthly Notices of the Royal Astronomical Society 05/2013; 433(4). DOI:10.1093/mnras/stt943
  • Source
    Ignacio Ferreras, Asmus Böhm, Bodo Ziegler, Joseph Silk
    [Show abstract] [Hide abstract]
    ABSTRACT: We analyse the Tully-Fisher relation at moderate redshift from the point of view of the underlying stellar populations, by comparing optical and NIR photometry with a phenomenological model that combines population synthesis with a simple prescription for chemical enrichment. The sample comprises 108 late-type galaxies extracted from the FORS Deep Field (FDF) and William Herschel Deep Field (WHDF) surveys at z<1 (median redshift z=0.45). A correlation is found between stellar mass and the parameters that describe the star formation history, with massive galaxies forming their populations early (zFOR~3), with star formation timescales, tau1~4Gyr; although with very efficient chemical enrichment timescales (tau2~1Gyr). In contrast, the stellar-to-dynamical mass ratio - which, in principle, would track the efficiency of feedback in the baryonic processes driving galaxy formation - does not appear to correlate with the model parameters. On the Tully-Fisher plane, no significant age segregation is found at fixed circular speed, whereas at fixed stellar-to-dynamical mass fraction, age splits the sample, with older galaxies having faster circular speeds at fixed Ms/Mdyn. Although our model does not introduce any prior constraint on dust reddening, we obtain a strong correlation between colour excess and stellar mass.
    Monthly Notices of the Royal Astronomical Society 04/2013; 437(2). DOI:10.1093/mnras/stt2018
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present observations of a luminous galaxy at redshift z=6.573 --- the end of the reioinization epoch --- which has been spectroscopically confirmed twice. The first spectroscopic confirmation comes from slitless HST ACS grism spectra from the PEARS survey (Probing Evolution And Reionization Spectroscopically), which show a dramatic continuum break in the spectrum at restframe 1216 A wavelength. The second confirmation is done with Keck + DEIMOS. The continuum is not clearly detected with ground-based spectra, but high wavelength resolution enables the Lyman alpha emission line profile to be determined. We compare the line profile to composite line profiles at redshift z=4.5. The Lyman alpha line profile shows no signature of a damping wing attenuation, confirming that the intergalactic gas is ionized at redshift z=6.57. Spectra of Lyman breaks at yet higher redshifts will be possible using comparably deep observations with IR-sensitive grisms, even at redshifts where Lyman alpha is too attenuated by the neutral IGM to be detectable using traditional spectroscopy from the ground.
    The Astrophysical Journal 02/2013; 773(1). DOI:10.1088/0004-637X/773/1/32
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: [Abridged] We present an integrated photometric spectral energy distribution (SED) of the Magellanic-type galaxy NGC 4449 from the far-ultraviolet (UV) to the submillimetre, including new observations acquired by the Herschel Space Observatory. We include integrated UV photometry from the Swift Ultraviolet and Optical Telescope using a measurement technique which is appropriate for extended sources with coincidence loss. In this paper, we examine the available multiwavelength data to infer a range of ages, metallicities and star formation rates for the underlying stellar populations, as well as the composition and the total mass of dust in NGC 4449. We present an iterative scheme, which allows us to build an in-depth and multicomponent representation of NGC 4449 `bottom-up', taking advantage of the broad capabilities of the photoionization and radiative transfer code MOCASSIN (MOnte CArlo SimulationS of Ionized Nebulae). We fit the observed SED, the global ionization structure and the emission line intensities, and infer a recent SFR of 0.4 Msolar/yr and a total stellar mass of approximately 1e9 Msolar emitting with a bolometric luminosity of 5.7e9 Lsolar. Our fits yield a total dust mass of 2.9e6 Msolar including 2 per cent attributed to polycyclic aromatic hydrocarbons. We deduce a dust to gas mass ratio of 1/190 within the modelled region. While we do not consider possible additional contributions from even colder dust, we note that including the extended HI envelope and the molecular gas is likely to bring the ratio down to as low as ~ 1/800.
    Monthly Notices of the Royal Astronomical Society 02/2013; 431(3). DOI:10.1093/mnras/stt345

Publication Stats

1k Citations
462.74 Total Impact Points

Institutions

  • 2005–2015
    • University College London
      • • Department of Space and Climate Physics
      • • Department of Physics and Astronomy
      Londinium, England, United Kingdom
  • 2013
    • Johns Hopkins University
      • Department of Physics and Astronomy
      Baltimore, Maryland, United States
  • 2012
    • Complutense University of Madrid
      • Department of Atomic, Molecular and Nuclear Physics
      Madrid, Madrid, Spain
  • 2006–2010
    • King's College London
      • Department of Physics
      Londinium, England, United Kingdom
  • 2009
    • University of California, Riverside
      • Department of Physics and Astronomy
      Riverside, California, United States
  • 2001–2008
    • University of Oxford
      • Department of Physics
      Oxford, ENG, United Kingdom
  • 1999
    • Universidad de Cantabria
      • Department of Modern Physics
      Santander, Cantabria, Spain
  • 1998
    • Instituto de Física de Cantabria
      Santander, Cantabria, Spain