Are you Rossana Ballerio?

Claim your profile

Publications (5)18.78 Total impact

  • [show abstract] [hide abstract]
    ABSTRACT: We studied the effect of intravascular activation of human neutrophils on the synthesis of cysteinyl leukotrienes (cysLT) and the formation of cerebral edema in guinea-pig brains. Challenge with the chemotactic formylated tripeptide fMLP (0.1 microM) of neutrophil-perfused brain in vitro resulted in blood-brain barrier disruption associated with a significant increase of cysLT. Both events were completely prevented by neutrophil pretreatment with a specific 5-lipoxygenase (5-LO) inhibitor. Perfusion with the 5-LO metabolite leukotriene B4 (10 nM), together with neutrophils treated with the 5-LO inhibitor, did not restore the alteration in permeability observed upon perfusion with untreated and activated neutrophils. The dual cysLT1-cysLT2 receptor antagonist BAYu9773 was more potent and more effective than a selective cysLT1 antagonist in preventing the brain permeability alteration induced by neutrophil activation. RT-PCR showed significant expression of cysLT2 receptor mRNA in human umbilical vein endothelial cells. Intravital microscopy in mice showed that inhibition of leukotriene synthesis significantly reduced firm adhesion of neutrophils to cerebral vessels without affecting rolling. These data support the hypothesis that neutrophil and endothelial cells cooperate toward the local synthesis of cysLT within the brain vasculature and, acting via the cysLT2 receptor on endothelial cells, may represent a contributing pathogenic mechanism in the development of cerebral inflammation and edema.
    The FASEB Journal 06/2004; 18(7):842-4. · 5.70 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: We evaluated the capacity of anti-aggregating agents to influence thromboxane A(2) and prostacyclin formation, arachidonic acid-endoperoxide redirection, platelet aggregation and vessel tone, in isolated rabbit aorta incubated with homologous platelets. Picotamide (N,N'bis(3-pyridinylmethyl)-4-methoxy-isophthalamide), the only dual thromboxane A(2)-synthase inhibitor/receptor antagonist in clinical use, inhibited arachidonic acid-induced platelet aggregation with low potency, increased 180-fold by aorta presence. It inhibited thromboxane A(2) formation in platelets and, in aorta presence, increased prostacyclin formation. Ozagrel (OKY-046, (E)-3-(4-(1-imidazolylmethyl)phenyl)-2-propenoic acid), a pure thromboxane A(2)-synthase inhibitor, behaved similarly to picotamide, although the aorta caused a higher (600-fold) shift. The potency of the antagonist SQ 29,548 (1S-(1 alpha,2 beta(5Z),3 beta,4 alpha))-7-(3((2-((phenylamino)carbonyl)hydrazino)methyl)-7-oxabicyclo(2.2.1)hept-2-yl)-5-heptenoic acid) was unaffected by aorta. In coincubation experiments, arachidonic acid-challenge increased thromboxane A(2)-dependent vessel tone; picotamide increased prostacyclin and reduced thromboxane A(2) formation and vasoconstriction. Ozagrel mimicked picotamide; aspirin (acetylsalicylic acid) reduced aorta contractility, thromboxane A(2) and prostacyclin formation. SQ 29,548 reduced vasoconstriction without affecting eicosanoids. We demonstrate the importance of redirection of eicosanoids in the mechanism of action of thromboxane A(2) inhibitors/antagonists within platelet-vascular wall interactions. These findings bear relevance in the development of novel anti-thrombotic drugs.
    European Journal of Pharmacology 06/2002; 443(1-3):133-41. · 2.59 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: The analgesic drug tramadol has been shown to relieve pain in inflammatory conditions, to inhibit the development of experimental inflammation, and to reduce prostaglandin (PG)E(2)concentrations in the inflammatory exudate. In this study, we evaluated the putative activity of tramadol to suppress prostaglandin endoperoxide synthase-1 (PGHS-1), and prostaglandin endoperoxide synthase-2 (PGHS-2) activities in human whole blood in vitro. Platelet thromboxane (Tx)B(2)production and monocyte PGE(2)production in LPS- stimulated blood were measured in samples incubated with different concentrations (300 ng/ml, 3 microg/ml, 30 microg/ml) of tramadol or its enantiomers. Neither tramadol nor the enantiomers inhibited the formation of arachidonic acid metabolites. Our results indicate that the anti-inflammatory effect of tramadol demonstrated in some models is not related to a direct inhibitory effect on the formation of prostanoids.
    European Journal of Pain 02/2000; 4(4):413-5. · 3.07 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: The renin-angiotensin system is an important modulator of arterial blood pressure and inhibitors of the angiotensin-converting enzyme (ACE-Is) and are currently used in the treatment of hypertension. The pleiotropic actions exerted by angiotensin II (AngII) on the functionality of the vessel wall may have pro-atherosclerotic outcomes; evidence for an anti-atherosclerotic effect of ACE-Is has been presented and an antioxidant effect has been attributed to thiol-containing ACE-Is, like Captopril. The present study has been undertaken to investigate the effect of Delapril, a lipophilic ACE-I, on the development of atherosclerosis in cholesterol-fed rabbits. While it did not correct hyperlipidemia, Delapril dose dependently inhibited the development of atherosclerosis, expressed as aortic area covered by lesions (23.3+/-4.1, 21.3+/-2.4 and 18.5+/-3.3% with Delapril at the daily dose of 5, 10 and 20 mg/kg, respectively, versus 38.2%+/-6.4 for control animals) and its effect was similar to that of Captopril (14.5+/-5.1% at the daily dose of 25 mg/kg). Furthermore, Delapril partially and dose dependently restored endothelium-dependent relaxation, which is impaired in vessels from hypercholesterolemic animals (51.80+/-12.18, 59.74+/-5.16, 69.13+/-8.70 maximal percent relaxation versus 48.26+/-3.05% for the untreated control and 67.67+/-6.72% for Captopril-treated animals). An antioxidant mechanism is unlikely to explain this data, since Delapril does not contain thiol groups. These observations suggest that Delapril may represent an effective pharmacological approach for the treatment of atherosclerosis during its early phases.
    Atherosclerosis 04/1998; 137(1):71-6. · 3.71 Impact Factor
  • Atherosclerosis 01/1997; 134(1):242-242. · 3.71 Impact Factor