Pablo H. Sotelo

University of Chile, Santiago, Region Metropolitana de Santiago, Chile

Are you Pablo H. Sotelo?

Claim your profile

Publications (3)12.73 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A new paradigm has emerged relating the pathogenesis of rheumatoid arthritis (RA), focused on the balance between T helper type 17 cells and regulatory T cells (T(regs) ). In humans, both subpopulations depend on transforming growth factor (TGF)-β for their induction, but in the presence of inflammatory cytokines, such as interleukin (IL)-6, the generation of Th17 is favoured. Tocilizumab is a therapeutic antibody targeting the IL-6 receptor (IL-6R), which has demonstrated encouraging results in RA. The aim of this study was to evaluate the effect of tocilizumab on Th1 cells, Th17 cells, IL-17 and interferon (IFN)-γ double secretors Th17/Th1 cells, and T(regs) in RA patients. Eight RA patients received tocilizumab monthly for 24 weeks and blood samples were obtained every 8 weeks to study T cell populations by flow cytometry. The frequency of Th17 cells, Th1 cells and Th17/Th1 cells was evaluated in peripheral blood mononuclear cells (PBMCs) activated in vitro with a polyclonal stimulus. T(regs) were identified by their expression of forkhead box protein 3 (FoxP3) and CD25 by direct staining of PBMCs. Although no changes were detected in the frequency of Th1 or Th17 cells, the percentages of peripheral T(regs) increased after therapy. In addition, the infrequent Th17/Th1 subpopulation showed a significant increment in tocilizumab-treated patients. In conclusion, tocilizumab was able to skew the balance between Th17 cells and T(regs) towards a more protective status, which may contribute to the clinical improvement observed in RA patients.
    Clinical & Experimental Immunology 03/2013; 171(3):237-42. DOI:10.1111/cei.12017 · 3.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Phage display library technology is a common method to produce human antibodies. In this technique, the immunoglobulin variable regions are displayed in a bacteriophage in a way that each filamentous virus displays the product of a single antibody gene on its surface. From the collection of different phages, it is possible to isolate the virus that recognizes specific targets. The most common form in which to display antibody variable regions in the phage is the single chain variable fragment format (scFv), which requires assembly of the heavy and light immunoglobulin variable regions in a single gene. In this work, we describe a simple and efficient method for the assembly of immunoglobulin heavy and light chain variable regions in a scFv format. This procedure involves a two-step reaction: (1) DNA amplification to produce the single strand form of the heavy or light chain gene required for the fusion; and (2) mixture of both single strand products followed by an assembly reaction to construct a complete scFv gene. Using this method, we produced 6-fold more scFv encoding DNA than the commonly used splicing by overlap extension PCR (SOE-PCR) approach. The scFv gene produced by this method also proved to be efficient in generating a diverse scFv phage display library. From this scFv library, we obtained phages that bound several non-related antigens, including recombinant proteins and rotavirus particles.
    mAbs 07/2012; 4(4):542-50. DOI:10.4161/mabs.20653 · 4.73 Impact Factor
  • mAbs 01/2012; 4(4):542-50. · 4.73 Impact Factor