Jun-Ming Li

Taoyuan Armed Forces General Hospital, Hsin-chu-hsien, Taiwan, Taiwan

Are you Jun-Ming Li?

Claim your profile

Publications (4)7.09 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Aberrant synaptic dysfunction is implicated in the pathogenesis of schizophrenia. The DLGAP2 gene encoding the SAP90/PSD-95-associated protein 2 (SAPAP2) located at the post-synaptic density of neuronal cells is involved in the neuronal synaptic function. This study aimed to investigate whether the DLGAP2 gene is associated with schizophrenia. We resequenced the putative promoter region and all the exons of the DLGAP2 gene in 523 patients with schizophrenia and 596 non-psychotic controls from Taiwan and conducted a case-control association analysis. We identified 19 known SNPs in this sample. Association analysis of 9 SNPs with minor allele frequency greater than 5% showed no association with schizophrenia. However, we found a haplotype (CCACCAACT) significantly associated with schizophrenia (odds ratio:2.5, p<0.001). We also detected 16 missense mutations and 1 amino acid-insertion mutation in this sample. Bioinformatic analysis showed some of these mutations were damaging or pathological to the protein function, but we did not find increased burden of these mutations in the patient group. Notably, we identified 5 private rare variants in 5 unrelated patients, respectively, including c.-69+9C>T, c.-69+13C>T, c.-69+47C>T, c.-69+55C>T at intron 1 and c.-32A>G at untranslated exon 2 of the DLGAP2 gene. These rare variants were not detected in 559 control subjects. Further reporter gene assay of these rare variants except c.-69+13C>T showed significantly elevated promoter activity than the wild type, suggesting increased DLGAP2 gene expression may contribute to the pathogenesis of schizophrenia. Our results indicate that DLGAP2 is a susceptible gene of schizophrenia.
    PLoS ONE 01/2014; 9(1):e85373. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We resequenced the exonic regions of DLGAP3 gene, which encodes SAP90/PSD95-associated protein 3, in 215 schizophrenic patients and 215 non-psychotic controls. Seven known single-nucleotide polymorphisms (SNPs) were identified, but not associated with schizophrenia. Nevertheless, we identified several rare missense mutations and some of them might be associated with the pathogenesis of schizophrenia.
    Psychiatry research. 02/2013;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Schizophrenia is a severe chronic mental disorder with high genetic components in its etiology. Several studies indicated that synaptic dysfunction is involved in the pathophysiology of schizophrenia. Postsynaptic synapse-associated protein 90/postsynaptic density 95-associated proteins (SAPAPs) constitute a part of the N-methyl-d-aspartate receptor-associated postsynaptic density proteins, and are involved in synapse formation. We hypothesized that genetic variants of the SAPAPs might be associated with schizophrenia. Thus, we systemically sequenced all the exons of the discs, large (Drosophila) homolog-associated protein 1 (DLGAP1) gene that encodes SAPAP1 in a sample of 121 schizophrenic patients and 120 controls from Taiwan. We totally identified six genetic variants, including five known SNPs (rs145691437, rs3786431, rs201567254, rs3745051 and rs11662259) and one rare missense mutation (c.1922A>G) in this sample. SNP- and haplotype-based analyses showed no association of these SNPs with schizophrenia. The c.1922A>G mutation that changes the amino acid lysine to arginine at codon 641 was found in one out of 121 patients, but not in 275 control subjects, suggesting it might be a patient-specific mutation. Nevertheless, bioinformatic analysis showed this mutation does not affect the function of the DLGAP1 gene and appears to be a benign variant. Hence, its relationship with the pathogenesis remains to be investigated.
    Psychiatry research. 08/2012;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Early growth response genes (EGR1, 2, 3, and 4) encode a family of nuclear proteins that function as transcriptional regulators. They are involved in the regulation of synaptic plasticity, learning, and memory, and are implicated in the pathogenesis of schizophrenia. We conducted a genetic association analysis of 14 SNPs selected from the EGR1, 2, 3, and 4 genes of 564 patients with schizophrenia and 564 control subjects. We also conducted Western blot analysis and promoter activity assay to characterize the EGR genes associated with schizophrenia We did not detect a true genetic association of these 14 SNPs with schizophrenia in this sample. However, we observed a nominal over-representation of C/C genotype of rs9990 of EGR2 in female schizophrenia as compared to female control subjects (p=0.012, uncorrected for multiple testing). Further study showed that the average mRNA level of the EGR2 gene in the lymphoblastoid cell lines of female schizophrenia patients was significantly higher than that in female control subjects (p=0.002). We also detected a nominal association of 4 SNPs (rs6747506, rs6718289, rs2229294, and rs3813226) of the EGR4 gene that form strong linkage disequilibrium with schizophrenia in males. Reporter gene assay showed that the haplotype T-A derived from rs6747506 and rs6718289 at the promoter region had significantly reduced promoter activity compared with the haplotype A-G. Our data suggest a tendency of gender-specific association of EGR2 and EGR4 in schizophrenia, with an elevated expression of EGR2 in lympoblastoid cell lines of female schizophrenia patients and a reduced EGR4 gene expression in male schizophrenia patients.
    Progress in Neuro-Psychopharmacology and Biological Psychiatry 06/2012; 39(1):149-55. · 3.55 Impact Factor

Publication Stats

7 Citations
7.09 Total Impact Points

Top co-authors


  • 2012–2013
    • Taoyuan Armed Forces General Hospital
      Hsin-chu-hsien, Taiwan, Taiwan
    • East-Taiwan Veterans Hospital
      Hua-lien, Taiwan, Taiwan