Are you Zhiming Huang?

Claim your profile

Publications (2)2.39 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent studies have demonstrated that melatonin significantly decreased all studied acute pancreatitis-associated inflammatory parameters, in addition to reducing apoptosis and necrosis associated with pancreatic injury. However, the effect of melatonin on gut barrier dysfunction and bacterial translocation has not been fully elucidated. This study aimed to investigate the protective effects of melatonin on intestinal integrity in a rat model of severe acute pancreatitis (SAP) to evaluate whether melatonin prevented intestine barrier dysfunction and reduced bacterial translocation. Forty male Sprague Dawley (SD) rats were randomly divided into three groups, with 8 rats in the sham operation (SO) group, 18 rats in the SAP group and 14 SAP rats in the melatonin treatment (MT) group. SAP was induced by retrograde injection of 4% taurocholate into the biliopancreatic duct. Melatonin was administered 30 min prior to taurocholate injection in the melatonin-treated rats. All rats were sacrificed 24 h subsequent to pancreatitis induction. Real-time fluorescence quantitative polymerase chain reaction was used to detect and quantify Escherichia coli (E. coli) O157 in postcava blood. The microvilli structure was also analyzed with transmission electron microscopy. The level of E. coli DNA in the MT group was significantly lower than in rats in the SAP group. No E. coli DNA was detected in the control group. Villus height and crypt depth in the ileum were significantly higher in the MT and control groups compared to the SAP group, and were significantly higher in the MT group than in the SAP group. These results suggested that melatonin prevented gut barrier dysfunction and reduced bacterial translocation, resulting in reduced pancreatic-associated infections and decreased early mortality rates.
    Experimental and therapeutic medicine 12/2013; 6(6):1343-1349. · 0.34 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study aims to investigate the relationship between the protective effects of melatonin in pancreas and the expression of sarco/endoplasmic reticulum Ca(2+)-ATPase (SERCA) and Na(+)/Ca(2+) exchanger (NCX) in rats with acute necrotizing pancreatitis (ANP), to verify whether melatonin ameliorates ANP by alleviating calcium overload. Ninety-six male Sprague-Dawley rats were randomly divided into four groups (sham operation group, ANP group, melatonin treatment group, melatonin contrast group). ANP was induced by the retrograde injection of 4% taurocholate (1 ml/kg body weight) into the biliopancreatic duct. Melatonin (50 mg/kg body weight) was administered 30 min before the induction of ANP in the melatonin treatment group. Rats in each group were euthanized at 1, 4, and 8 h after ANP induction. Pancreatic tissues were removed to measure SERCA and NCX levels and cytosolic calcium ion (Ca(2+)) concentration ([Ca(2+)](i)). At each time point, SERCA and NCX levels in the melatonin treatment group were significantly higher than that in the ANP group, and lower than that in the sham group and the melatonin contrast group. These levels did not differ between the 4- and 8-h time points in the ANP group. [Ca(2+)](i) in pancreatic acinar cells was higher in the melatonin treatment group than in the sham group and the melatonin contrast group, but lower than in the ANP group, at each time point. Melatonin can reduce pancreatic damage via the up-regulation of SERCA and NCX expression, which can alleviate calcium overload in pancreatic acinar cells.
    Pancreatology 05/2012; 12(3):257-63. · 2.04 Impact Factor