Kathy Qian Luo

Nanyang Technological University, Tumasik, Singapore

Are you Kathy Qian Luo?

Claim your profile

Publications (51)167.87 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Stem cell tracking can reveal the underlying biological processes of stem-cell-based therapies such as the migration and biodistribution of human mesenchymal stem cells (hMSCs) in cancer therapy. Nanoparticle-based contrast agents offer unprecedented opportunities for achieving this goal due to their unique and tunable imaging capabilities. However, most nanoparticles are still in the process of development due to challenges such as retention time and safety issues, and are inaccessible to most researchers. In this article, we investigate the potential application of core-shell fluorescent silica nanoparticles (i.e. C dots), which are commercially available and approved by the FDA for clinical trials. Specifically we demonstrate that 500 nm C dots have prolonged cellular retention (up to one month), minimal contrast agent transfer (at least three weeks) between cells in a co-culture Boyden chamber system, and minimal influence on the hMSC properties including viability, proliferation, differentiation,
    Journal of Materials Chemistry B. 01/2015;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Twenty compounds from Garcinia oblongifolia were screened for proapoptotic activity using FRET-based HeLa-C3 sensor cells. Among them, oblongifolins F and G (1 and 2), 1,3,5-trihydroxy-13,13-dimethyl-2H-pyran[7,6-b]xanthone (3), nigrolineaxanthone T (4), and garcicowin B (5) showed significant proapoptotic activity at a concentration of 10 μM. Bioassessments were then performed to evaluate the potential of these compounds for therapeutic application. All five compounds showed significant cytotoxicity and caspase-3-activating ability in cervical cancer HeLa cells, with compounds 1 and 2 having the highest potencies. All five compounds specifically induced caspase-dependent apoptosis, which could be prevented by the pan-caspase inhibitor zVAD-fmk. In particular, 3 induced apoptosis through mitotic arrest. Compounds 1-5 displayed similar IC50 values (3.9-16.5 μM) against the three cancer cell lines HeLa, MDA-MB-435, and HepG2. In addition, compounds 1, 2, and 4 exhibited similar and potent IC50 values (2.4-5.1 μM) against several breast and colon cancer cell lines, including those overexpressing either HER2 or P-glycoprotein. HER2 and P-glycoprotein are known factors that confer resistance to anticancer drugs in cancer cells. This is the first study on the cytotoxicity, caspase-3-activing ability, and specificity of proapoptotic compounds isolated from G. oblongifolia in HeLa cells. The potential application of these compounds against HER2- or P-glycoprotein-overexpressing cancer cells was investigated.
    Journal of Natural Products 04/2014; · 3.29 Impact Factor
  • Jinjie Xu, Kathy Qian Luo
    Chemical Engineering Research and Design 04/2014; · 1.93 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: People suffering from Diabetes Mellitus (DM) are prone to an array of vascular complications leading to end organ damage. The hallmark of these vascular complications is endothelium dysfunction, which is caused by endothelial cell (EC) apoptosis. Although the endothelial cell (EC) dysfunction induced by hyperglycaemia and fluid shear stress has been studied, the effects of biological factors in the blood of DM patients on EC integrity have not been reported in the in vitro models that mimic the physiological pulsatile nature of the vascular system. This study reports the development of a hemodynamic lab-on-a-chip system to investigate this issue. The pulsatile flow was applied to a monolayer of endothelial cells expressing a fluorescence resonance energy transfer (FRET)-based biosensor that changes colour from green to blue in response to caspase-3 activation during apoptosis. Plasma samples from healthy volunteers and DM patients were compared to identify biological factors that are critical to endothelial disruption. Three types of microchannels were designed to simulate the blood vessels under healthy and partially blocked pathological conditions. The results showed that EC apoptosis rates increased with increasing glucose concentration and levels of shear stress. The rates of apoptosis further increased by a factor of 1.4-2.3 for hyperglycaemic plasma under all dynamic conditions. Under static conditions, little difference was detected in the rate of EC apoptosis between experiments using plasma from DM patients and glucose medium, suggesting that the effects of hyperglycaemia and biological factors on the induction of EC apoptosis are all shear flow-dependent. A proteomics study was then conducted to identify biological factors, demonstrating that the levels of eight proteins, including haptoglobin and clusterin, were significantly down-regulated, while six proteins, including apolipoprotein C-III, were significantly up-regulated in the plasma of DM patients compared to healthy volunteers. This hemodynamic lab-on-a-chip system can serve as a high throughput platform to assess the risk of vascular complications of DM patients and to determine the effects of therapeutics or other interventions on EC apoptosis.
    Integrative Biology 03/2014; · 4.32 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this paper we show that acetyltanshinone IIA (ATA), a novel anti-cancer agent, preferentially inhibits cell growth of oestrogen receptor positive (ER+) breast cancer cells and that it is more potent than the commonly used anti-breast cancer agent, tamoxifen. The metabolic product of ATA, hydroquinone tanshinone IIA (HTA) binds to the ERα and causes its degradation mainly in the nucleus via an ubiquitin-mediated proteasome-dependent pathway. In addition, ATA also reduced the mRNA levels of the ERα encoding gene, ESR1, distinguishing ATA from another anti-breast cancer drug, fulvestrant. Finally, ATA reduced the transcription of an ER-responsive gene, GREB1.
    Cancer letters 12/2013; · 5.02 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: 1-[4-(bromomethyl)phenyl]-1,2,2-triphenylethene (2) was synthesized and evaluated for specific fluorescent prestaining of proteins containing cysteine (Cys) in SDS-PAGE. The molecule showed classic aggregation-induced emission (AIE) property in protein labeling and its quantum efficiency was further enhanced upon reacting with Cys. The parameters of reaction such as labeling time, concentration of dye and reducing reagent-tris(2-carboxyethyl)phosphine (TCEP) was examined to obtain the optimal labeling condition. In addition to its specific labeling effect, molecule 2 also showed its advantage over traditional self-quenching dyes through labeling Cys containing BSA with different dye/Cys ratios.
    ACS Applied Materials & Interfaces 05/2013; · 5.90 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To better understand how hyperglycemia induces endothelial cell dysfunction under the diabetic conditions, a hemodynamic microfluidic chip system was developed. The system combines a caspase-3-based fluorescence resonance energy transfer (FRET) biosensor cell line which can detect endothelial cell apoptosis in real-time, post-treatment effect and with a limited cell sample, by using a microfluidic chip which can mimic the physiological pulsatile flow profile in the blood vessel. The caspase-3-based FRET biosensor endothelial cell line (HUVEC-C3) can produce a FRET-based sensor protein capable of probing caspase-3 activation. When the endothelial cells undergo apoptosis, the color of the sensor cells changes from green to blue, thus sensing apoptosis. A double-labeling fluorescent technique (yo pro-1 and propidium iodide) was used to validate the findings revealed by the FRET-based caspase sensor. The results show high rates of apoptosis and necrosis of endothelial cells when high glucose concentration was applied in our hemodynamic microfluidic chip combined with an exhaustive pulsatile flow profile. The two apoptosis detection techniques (fluorescent method and FRET biosensor) are comparable; but FRET biosensor offers more advantages such as real-time observation and a convenient operating process to generate more accurate and reliable data. Furthermore, the activation of the FRET biosensor also confirms the endothelial cell apoptosis induced by the abnormal pulsatile shear stress and high glucose concentration is through caspase-3 pathway. A 12% apoptotic rate (nearly a 4-fold increase compared to the static condition) was observed when the endothelial cells were exposed to a high glucose concentration of 20 mM under 2 h exhaustive pulsatile shear stress of 30 dyne cm(-2) and followed with another 10 h normal pulsatile shear stress of 15 dyne cm(-2). Therefore, the most important finding of this study is to develop a novel endothelial cell apoptosis detection method, which combines the microfluidic chip system and FRET biosensor. This finding may provide new insight into how glucose causes endothelial cell dysfunction, which is the major cause of diabetes-derived complications.
    Lab on a Chip 04/2013; · 5.70 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: One novel xanthone, oliganthone A (1), was isolated from the stems of the plant Garcinia oligantha. It features the O-bearing C(3)-atom and absence of C(4) compared with the structures of related known xanthones, which have never been reported before. The structure of this compound was elucidated by spectroscopic analysis. Compound 1 showed strong HeLa cell growth-inhibiting effects with IC50 values below 10 μM.
    Helvetica Chimica Acta 03/2013; 96(3). · 1.38 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A new aggregation-induced emission (AIE) compound 1,2-bis[4-(isothiocyanatomethyl)phenyl]-1,2-diphenylethene () was synthesized for use in SDS-PAGE. The molecule is practically nonemissive in solution but becomes highly emissive after reacting with the amine groups of the proteins by either the prestaining or poststaining method. The sensitivity of achieved in the prestaining method is the same as that of Coomassie brilliant blue (CBB), while that observed in the poststaining method is higher than that of CBB. Excellent linear responses with the amount of protein were obtained in both cases. The detection of a mixture of proteins with different molecular weights was successfully achieved.
    The Analyst 10/2012; · 4.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The aim of the present study was to develop the PLGA/HP55 nanoparticles with improved hypoglycemic effect for oral insulin delivery. The insulin-loaded PLGA/HP55 nanoparticles were produced by a modified multiple emulsion solvent evaporation method. The physicochemical characteristics, in vitro release of insulin, and in vivo efficacy in diabetic rats of the nanoparticles were evaluated. The insulin encapsulation efficiency was up to 94%, and insulin was released in a pH-dependent manner under simulated gastrointestinal conditions. When administered orally (50 IU/kg) to diabetic rats, the nanoparticles can decrease rapidly the blood glucose level with a maximal effect between 1 and 8 h. The relative bioavailability compared with subcutaneous injection (5 IU/kg) in diabetic rats was 11.3% ± 1.05%. This effect may be explained by the fast release of insulin in the upper intestine, where it is better absorbed by the high gradient concentration of insulin than other regions. These results show that the PLGA/HP55 nanoparticles developed in the study might be employed as a potential method for oral insulin delivery.
    Nanoscale Research Letters 06/2012; 7(1):299. · 2.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A new aggregation-induced emission (AIE) compound 1,1-dimethyl-2,5-bis[4-(isothiocyanatemethyl)phenyl]-3,4-diphenylsilole (SITC) was synthesized and used to conjugate with aminoallyl-dUTP. The SITC-dUTP can be incorporated enzymatically into DNA strands with the degree of labeling (DOL) up to the theoretic limit.
    Chemical Communications 05/2012; · 6.38 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this work, we designed and developed a two-stage delivery system composed of enteric capsule and cationic nanoparticles for oral delivery of insulin. The enteric capsule was coated with pH-sensitive hydroxypropyl methylcellulose phthalate (HP55), which could selectively release insulin from nanoparticles in the intestinal tract, instead of stomach. The biodegradable poly(lactic-co-glycolic acid) (PLGA) was selected as the matrix for loading insulin. Eurdragit(®) RS (RS) was also introduced to the nanoparticles for enhancing the penetration of insulin across the mucosal surface in the intestine. The nanoparticles were prepared with the multiple emulsions solvent evaporation method via ultrasonic emulsification. The optimized nanoparticles have a mean size of 285nm, a positive zeta potential of 42mV. The encapsulation efficiency was up to 73.9%. In vitro results revealed that the initial burst release of insulin from nanoparticles was markedly reduced at pH 1.2, which mimics the stomach environment. In vivo effects of the capsule containing insulin PLGA/RS nanoparticles were also investigated in diabetic rat models. The oral delivered capsules induced a prolonged reduction in blood glucose levels. The pharmacological availability was found to be approximately 9.2%. All the results indicated that the integration of HP55-coated capsule with cationic nanoparticles may be a promising platform for oral delivery of insulin with high bioavailability.
    International Journal of Pharmaceutics 04/2012; 425(1-2):1-8. · 3.99 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Four new compounds, oliganthins A-D (1-4), and one known caged xanthone gaudichaudione H (5) were isolated from the stems of Garcinia oligantha. The structures of the new compounds were elucidated by spectroscopic evidences. All of the five compounds were evaluated for their apoptosis-inducing effects using HeLa-C3 cells which have been genetically engineered to produce a fluorescent biosensor capable of detecting caspase-3 activation. All of them induced cell apoptosis at 10 μM or lower concentrations. The apoptotic activity of oliganthins A, B and gaudichaudione H were further confirmed by detecting the cleavage of PARP, which is the substrate of activated caspase-3, in these compounds-treated cells using the method of Western blot. Moreover, the values of IC(50) were measured for all five compounds on HeLa cells using the MTT assay. Among them, gaudichaudione H had the lowest IC(50) value of 0.90 μM, while the other four new compounds had IC(50) values of 1.58, 1.52, 4.15, and 7.82 μM, respectively. These results show that gaudichaudione H has the strongest apoptosis-inducing effect and cell growth inhibition effect among these xanthones and it may have the potential to be developed into a new anticancer agent.
    Bioorganic & medicinal chemistry letters 03/2012; 22(6):2350-3. · 2.65 Impact Factor
  • Source
    Xiaoming Zhu, Afu Fu, Kathy Qian Luo
    [Show abstract] [Hide abstract]
    ABSTRACT: In this study, we developed a high-throughput endothelial cell apoptosis assay using a fluorescence resonance energy transfer (FRET)-based biosensor. After exposure to apoptotic inducer UV-irradiation or anticancer drugs such as paclitaxel, the fluorescence of the cells changed from green to blue. We developed this method into a high-throughput assay in 96-well plates by measuring the emission ratio of yellow fluorescent protein (YFP) to cyan fluorescent protein (CFP) to monitor the activation of a key protease, caspase-3, during apoptosis. The Z' factor for this assay was above 0.5 which indicates that this assay is suitable for a high-throughput analysis. Finally, we applied this functional high-throughput assay for screening vascular disrupting agents (VDA) which could induce endothelial cell apoptosis from our in-house compounds library and dioscin was identified as a hit. As this assay allows real time and sensitive detection of cell apoptosis, it will be a useful tool for monitoring endothelial cell apoptosis in living cell situation and for identifying new VDA candidates via a high-throughput screening.
    Biochemical and Biophysical Research Communications 02/2012; 418(4):641-6. · 2.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This paper presents the formation of double-layer cellular tumor spheroid for the co-culture of hepatocyte (HepG2 cancer liver cell and LO2 normal liver cell) using alginate hydrogel. With the microfluidic chip, double-layer cellular tumor spheroid can be formed by the hydrogel droplet to mimic the in vivo environment in which the cancer cell is surrounded by normal cell. A microchip with concentration gradient generation and tumor spheroid trapping site is designed for anti-cancer drug analysis.
    Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS) 01/2012;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Oblongifolin C (OC) was identified as a potent apoptosis inducer from an herbal plant, Garcinia yunnanensis, during our previous bioassay-guided drug screening. In this study, we investigated the signaling pathways through which OC activated apoptosis in HeLa cells. We also compared the IC(50) values of OC with that of etoposide, paclitaxel and vinblastine in multiple cancer cell lines including HER2 and P-glycoprotein overexpressing cells. In addition, the in vivo antitumor effect of OC was studied in nude mice model. Our results showed that OC induced a caspase-dependent apoptosis by triggering a series of events in HeLa cells including Bax translocation, cytochrome c release, caspase-3 activation, chromosome fragmentation followed by caspase-8 activation, Bid cleavage and eventually cell death. Addition of a pan-caspase inhibitor or overexpression of an anti-apoptotic protein, Bcl-xL, prevented OC-induced cell death. Moreover, OC exhibited a wide anticancer spectrum in multiple cancer cell lines with comparable IC(50) values, regardless of the expression levels of HER2 and P-glycoprotein. In contrast, the IC(50) values of three clinical anticancer drugs, etoposide, paclitaxel and vinblastine were significantly elevated in HER2 and/or P-glycoprotein overexpressing cells. Furthermore, OC showed a similar antitumor effect but lower general toxicity than etoposide against xenografted human tumors in nude mice model. All these data suggested that OC is a promising apoptosis inducer with the potential to be developed into a clinical anticancer drug.
    International Journal of Cancer 11/2011; 131(6):1445-54. · 6.20 Impact Factor
  • Advanced Materials 06/2011; 23(29):3298-302. · 14.83 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A hemodynamic Lab-on-a-chip system was developed in this study. This system has two unique features: (1) it consists of a microfluidic network with an array of endothelial cell seeding sites for testing them under multiple conditions, and (2) the flow rate and the frequency of the culture medium in the microchannel are controlled by a pulsation free pump to mimic the flow profile of the blood in the blood vessel under different physiological conditions. The investigated physiological conditions were: (1) the resting condition in a normal shear stress of 15 dyne cm(-2) with a normal heart rate of 70 bpm, (2) an exhaustive exercise condition with a high shear stress of 30 dyne cm(-2) and a fast heart rate of 140 bpm, and (3) a constant high shear stress of 30 dyne cm(-2). Two chemical conditions were investigated (10 mM and 20 mM glucose) to mimic hyperglycemic conditions in diabetes patients. The effects of various shear stresses either alone or in combination with different glucose concentrations on endothelial cells were examined using the developed hemodynamic Lab-on-a-chip system by assessing two parameters. One is the intracellular level of reactive oxygen species (ROS) determined by a fluorescent probe, H(2)DCFDA. Another is the mitochondrial morphology revealed with a fluorescent dye, MitoTracker Green FM. The results showed that ROS level was elevated nearly 4-fold after 60 min of exhaustive exercise. We found that the pulsatile nature of the fluid was the determination factor for causing ROS generation in the cells as almost no increase of ROS was detected in the constant shear stress condition. Similarly, much higher level of ROS was detected when 10 mM glucose was applied to the cells under normal or high pulsatile shear stresses compared with under a static condition. These results suggest that it is necessary to use pulsatile shear stress to represent the physiological conditions of the blood flow, and demonstrate the advantage of utilizing this newly developed hemodynamic Lab-on-a-chip system over the conventional non-pulsatile system in the future shear stress related studies.
    Lab on a Chip 03/2011; 11(11):1856-63. · 5.70 Impact Factor
  • Ting Yu, Xue Mei Gao, Hong Xi Xu, Kathy Qian Luo
    Proceedings of the First International Symposium on Bioengineering; 01/2011
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A hemodynamic Lab-on-a-chip system was developed in this study. This system has two unique features: (1) it consists of a microfluidic network with an array of endothelial cell seeding sites for testing them under multiple conditions, and (2) the flow rate and the frequency of the culture medium in the microchannel are controlled by a pulsation free pump to mimic the flow profile of the blood in the blood vessel under different physiological conditions. The results demonstrate the advantage of utilizing this system over the conventional non-pulsatile system in the future shear stress related studies.

Publication Stats

741 Citations
167.87 Total Impact Points


  • 2007–2014
    • Nanyang Technological University
      • • School of Chemical and Biomedical Engineering
      • • School of Electrical and Electronic Engineering
      Tumasik, Singapore
  • 2001–2011
    • The Hong Kong University of Science and Technology
      • Department of Chemical and Biomolecular Engineering
      Kowloon, Hong Kong
  • 2008–2010
    • Racing Laboratory of the Hong Kong Jockey Club
      Hong Kong, Hong Kong
  • 2003
    • California Institute of Technology
      • Division of Biology
      Pasadena, CA, United States