Are you Véronique Baccini?

Claim your profile

Publications (2)19.55 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: RUNX1 gene alterations are associated with acquired and inherited hematologic malignancies that include familial platelet disorder/acute myeloid leukemia, primary or secondary acute myeloid leukemia, and chronic myelomonocytic leukemia. Recently, we reported that RUNX1-mediated silencing of nonmuscle myosin heavy chain IIB (MYH10) was required for megakaryocyte ploidization and maturation. Here we demonstrate that runx1 deletion in mice induces the persistence of MYH10 in platelets, and a similar persistence was observed in platelets of patients with constitutional (familial platelet disorder/acute myeloid leukemia) or acquired (chronic myelomonocytic leukemia) RUNX1 mutations. MYH10 was also detected in platelets of patients with the Paris-Trousseau syndrome, a thrombocytopenia related to the deletion of the transcription factor FLI1 that forms a complex with RUNX1 to regulate megakaryopoiesis, whereas MYH10 persistence was not observed in other inherited forms of thrombocytopenia. We propose MYH10 detection as a new and simple tool to identify inherited platelet disorders and myeloid neoplasms with abnormalities in RUNX1 and its associated proteins.
    Blood 06/2012; 120(13):2719-22. · 9.78 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A major determinant in platelet production is the megakaryocyte (MK) size that is regulated both by ploidization and the increase in cytoplasmic volume at the end of maturation. Here we investigated the involvement of the mammalian target of rapamycin (mTOR) pathway in the regulation of megakaryopoiesis. We show that phosphorylation of mTOR, p70S6K1, and 4E-BP1 was diminished in thrombopoietin-cultured human MKs after rapamycin treatment. Rapamycin induced an inhibition in the G1/S transition and a decrease in the mean MK ploidy via a diminution of p21 and cyclin D3 occurring at a transcriptional level. Both cycling (2N/4N) and polyploid (8N/16N) MKs were reduced in size, with a size reduction slightly more pronounced in mature polyploid MKs than in immature ones. Rapamycin also induced a delay in the expression of MK markers and prevented the generation of proplatelet MKs. Additional experiments performed in vitro with MKs from mutant mice showed that the decrease in mean ploidy level and the delay in MK differentiation in the presence of rapamycin were less pronounced in CdknIa (p21)-/- MKs than in CdknIa (p21)+/+ MKs. These findings indicate that the mTOR pathway plays an important role during megakaryopoiesis by regulating ploidy, cell size, and maturation, in part by regulating p21 and cyclin D3.
    Blood 04/2006; 107(6):2303-10. · 9.78 Impact Factor