Feihan F Dai

University of Toronto, Toronto, Ontario, Canada

Are you Feihan F Dai?

Claim your profile

Publications (13)96.82 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Gestational diabetes (GDM) results from failure of the β cells to adapt to increased metabolic demands; however, the cause of GDM and the extremely high rate of progression to type 2 diabetes (T2D) remains unknown. Using metabolomics, we show that the furan fatty acid metabolite 3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid (CMPF) is elevated in the plasma of humans with GDM, as well as impaired glucose-tolerant and T2D patients. In mice, diabetic levels of plasma CMPF induced glucose intolerance, impaired glucose-stimulated insulin secretion, and decreased glucose utilization. Mechanistically, we show that CMPF acts directly on the β cell, causing impaired mitochondrial function, decreasing glucose-induced ATP accumulation, and inducing oxidative stress, resulting in dysregulation of key transcription factors and ultimately reduced insulin biosynthesis. Importantly, specifically blocking its transport through OAT3 or antioxidant treatment could prevent CMPF-induced β cell dysfunction. Thus, CMPF provides a link between β cell dysfunction and GDM/T2D that could be targeted therapeutically.
    Cell metabolism 04/2014; 19(4):653-66. · 17.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Class B G protein-coupled receptors (GPCRs) are important regulators of endocrine physiology, and peptide-based therapeutics targeting some of these receptors have proven effective at treating disorders such as hypercalcemia, osteoporosis, and type 2 diabetes mellitus (T2DM). As next generation efforts attempt to develop novel non-peptide, orally available molecules for these GPCRs, new animal models expressing human receptor orthologs may be required because small molecule ligands make fewer receptor contacts, and thus, the impact of amino acid differences across species may be substantially greater. The objective of this report was to generate and characterize a new mouse model of the human glucagon-like peptide-1 receptor (hGLP-1R), a class B GPCR for which established peptide therapeutics exist for the treatment of T2DM. hGLP-1R knock-in mice express the receptor from the murine Glp-1r locus. Glucose tolerance tests and gastric emptying studies show hGLP-1R mice and their wild-type littermates display similar physiological responses for glucose metabolism, insulin secretion, and gastric transit, and treatment with the GLP-1R agonist, exendin-4, elicits similar responses in both groups. Further, ex vivo assays show insulin secretion from humanized islets is glucose-dependent and enhanced by GLP-1R agonists. To enable additional utility, the targeting construct of the knock-in line was engineered to contain both flanking LoxP sites and a C-terminal FLAG epitope. Anti-FLAG affinity purification shows strong expression of hGLP-1R in islets, lung, and stomach. We crossed the hGLP-1R line with Rosa26Cre mice and generated global Glp-1r-/- animals. Immunohistochemistry of pancreas from humanized and knock-out mice identified a human GLP-1R-specific antibody that detects the GLP-1R in human pancreas as well as in the pancreas of hGLP-1r knock-in mice. This new hGLP-1R model will allow tissue-specific deletion of the GLP-1R, purification of potential GLP-1R partner proteins, and testing of novel therapeutic agents targeting the hGLP-1R.
    PLoS ONE 01/2014; 9(4):e93746. · 3.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Glucagon-like peptide 1 receptor (GLP-1R) controls diverse physiological functions in tissues, including pancreatic islets, the brain, and the heart. To understand the mechanisms that control glucagon-like peptide 1 (GLP-1) signaling better, we sought to identify proteins that interact with the GLP-1R using a membrane-based split ubiquitin yeast two-hybrid (MYTH) assay. A screen of a human fetal brain cDNA prey library with the unliganded human GLP-1R as bait in yeast revealed 38 novel interactor protein candidates. These interactions were confirmed in mammalian Chinese hamster ovarian cells by coimmunoprecipitation. Immunofluorescence was used to show subcellular colocalization of the interactors with GLP-1R. Cluster analysis revealed that the interactors were primarily associated with signal transduction, metabolism, and cell development. When coexpressed with the GLP-1R in Chinese hamster ovarian cells, 15 interactors significantly altered GLP-1-induced cAMP accumulation. Surprisingly, all 15 proteins inhibited GLP-1-activated cAMP. Given GLP-1's prominent role as an incretin, we then focused on 3 novel interactors, SLC15A4, APLP1, and AP2M1, because they are highly expressed and localized to the membrane in mouse insulinoma β cells. Small interfering RNA-mediated knockdown of each candidate gene significantly enhanced GLP-1-induced insulin secretion. In conclusion, we have generated a novel GLP-1R-protein interactome, identifying several interactors that suppress GLP-1R signaling. We suggest that the inhibition of these interactors may serve as a novel strategy to enhance GLP-1R activity.
    Molecular Endocrinology 07/2013; · 4.75 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: AIMS/HYPOTHESIS: Sirtuin 1 (SIRT1) has emerged as a key metabolic regulator of glucose homeostasis and insulin secretion. Enhanced SIRT1 activity has been shown to be protective against diabetes, although the mechanisms remain largely unknown. The aim of this study was to determine how SIRT1 regulates insulin secretion in the pancreatic beta cell. METHODS: Pancreatic beta cell-specific Sirt1 deletion was induced by tamoxifen injection in 9-week-old Pdx1CreER:floxSirt1 mice (Sirt1BKO). Controls were injected with vehicle. Mice were assessed metabolically via glucose challenge, insulin tolerance tests and physical variables. In parallel, Sirt1 short interfering RNA-treated MIN6 cells (SIRT1KD) and isolated Sirt1BKO islets were used to investigate the effect of SIRT1 inactivation on insulin secretion and gene expression. RESULTS: OGTTs showed impaired glucose disposal in Sirt1BKO mice due to insufficient insulin secretion. Isolated Sirt1BKO islets and SIRT1KD MIN6 cells also exhibited impaired glucose-stimulated insulin secretion. Subsequent analyses revealed impaired α-ketoisocaproic acid-induced insulin secretion and attenuated glucose-induced Ca(2+) influx, but normal insulin granule exocytosis in Sirt1BKO beta cells. Microarray studies revealed a large cluster of mitochondria-related genes, the expression of which was dysregulated in SIRT1KD MIN6 cells. Upon further analysis, we demonstrated an explicit defect in mitochondrial function: the inability to couple nutrient metabolism to mitochondrial membrane hyperpolarisation and reduced oxygen consumption rates. CONCLUSIONS/INTERPRETATION: Taken together, these findings indicate that in beta cells the deacetylase SIRT1 regulates the expression of specific mitochondria-related genes that control metabolic coupling, and that a decrease in beta cell Sirt1 expression impairs glucose sensing and insulin secretion.
    Diabetologia 06/2013; · 6.49 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The search for putative precursor cells within the pancreas has been the focus of extensive research. Previously, we identified rare pancreas-derived multipotent precursor (PMP) cells in the mouse with the intriguing capacity to generate progeny in the pancreatic and neural lineages. Here, we establish the embryonic pancreas as the developmental source of PMPs through lineage-labeling experiments. We also show that PMPs express insulin and can contribute to multiple pancreatic and neural cell types in vivo. In addition, we have isolated PMPs from adult human islet tissue that are also capable of extensive proliferation, self-renewal, and generation of multiple differentiated pancreatic and neural cell types. Finally, both mouse and human PMP-derived cells ameliorated diabetes in transplanted mice. These findings demonstrate that the adult mammalian pancreas contains a population of insulin(+) multipotent stem cells and suggest that these cells may provide a promising line of investigation toward potential therapeutic benefit.
    Cell stem cell 03/2011; 8(3):281-93. · 23.56 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Zinc is highly concentrated in pancreatic beta cells, is critical for normal insulin storage and may regulate glucagon secretion from alpha cells. Zinc transport family member 8 (ZnT8) is a zinc efflux transporter that is highly abundant in beta cells. Polymorphisms of ZnT8 (also known as SLC30A8) gene in man are associated with increased risk of type 2 diabetes. While global Znt8 knockout (Znt8KO) mice have been characterised, ZnT8 is also present in other islet cell types and extra-pancreatic tissues. Therefore, it is important to find ways of understanding the role of ZnT8 in beta and alpha cells without the difficulties caused by the confounding effects of ZnT8 in these other tissues. We generated mice with beta cell-specific (Znt8BKO) and alpha cell-specific (Znt8AKO) knockout of Znt8, and performed in vivo and in vitro characterisation of the phenotypes to determine the functional and anatomical impact of ZnT8 in these cells. Thus we assessed zinc accumulation, insulin granule morphology, insulin biosynthesis and secretion, and glucose homeostasis. Znt8BKO mice are glucose-intolerant, have reduced beta cell zinc accumulation and atypical insulin granules. They also display reduced first-phase glucose-stimulated insulin secretion, reduced insulin processing enzyme transcripts and increased proinsulin levels. In contrast, Znt8AKO mice show no evident abnormalities in plasma glucagon and glucose homeostasis. This is the first report of specific beta and alpha cell deletion of Znt8. Our data indicate that while, under the conditions studied, ZnT8 is absolutely essential for proper beta cell function, it is largely dispensable for alpha cell function.
    Diabetologia 08/2010; 53(8):1656-68. · 6.49 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: During insulin secretion, pancreatic alpha-cells are exposed to Zn(2+) released from insulin-containing secretory granules. Although maintenance of Zn(2+) homeostasis is critical for cell survival and glucagon secretion, very little is known about Zn(2+)-transporting pathways and the regulation of Zn(2+) in alpha-cells. To examine the effect of Zn(2+) on glucagon secretion and possible mechanisms controlling the intracellular Zn(2+) level ([Zn(2+)](i)), we employed a glucagon-producing cell line (alpha-TC6) and mouse islets where non-beta-cells were identified using islets expressing green fluorescent protein exclusively in beta-cells. In this study, we first confirmed that Zn(2+) treatment resulted in the inhibition of glucagon secretion in alpha-TC6 cells and mouse islets in vitro. The inhibition of secretion was not likely via activation of K(ATP) channels by Zn(2+). We then determined that Zn(2+) was transported into alpha-cells and was able to accumulate under both low and high glucose conditions, as well as upon depolarization of cells with KCl. The nonselective Ca(2+) channel blocker Gd(3+) partially inhibited Zn(2+) influx in alpha-TC cells, whereas the L-type voltage-gated Ca(2+) channel inhibitor nitrendipine failed to block Zn(2+) accumulation. To investigate Zn(2+) transport further, we profiled alpha-cells for Zn(2+) transporter transcripts from the two families that work in opposite directions, SLC39 (ZIP, Zrt/Irt-like protein) and SLC30 (ZnT, Zn(2+) transporter). We observed that Zip1, Zip10, and Zip14 were the most abundantly expressed Zips and ZnT4, ZnT5, and ZnT8 the dominant ZnTs. Because the redox state of cells is also a major regulator of [Zn(2+)](i), we examined the effects of oxidizing agents on Zn(2+) mobilization within alpha-cells. 2,2'-Dithiodipyridine (-SH group oxidant), menadione (superoxide generator), and SIN-1 (3-morpholinosydnonimine) (peroxynitrite generator) all increased [Zn(2+)](i) in alpha-cells. Together these results demonstrate that Zn(2+) inhibits glucagon secretion, and it is transported into alpha-cells in part through Ca(2+) channels. Zn(2+) transporters and the redox state also modulate [Zn(2+)](i).
    Journal of Biological Chemistry 05/2008; 283(15):10184-97. · 4.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Involvement of the mitochondrial permeability transition (MPT) pore in early stages of lipotoxic stress in the pancreatic beta-cell lines MIN6 and INS-1 was the focus of this study. Both long term (indirect) and acute (direct) effects of fatty acid (FA) application on beta-cell susceptibility to Ca(2+)-induced MPT induction were examined using both permeabilized and intact beta-cells. Long term exposure to moderate (i.e. below cytotoxic) levels of the saturated FA palmitate sensitized beta-cell mitochondria to MPT induced by Ca(2+). Long term exposure to palmitate was significantly a more efficient inducer of MPT than the unsaturated FA oleate, although upon acute application both caused similar MPT activation. Application of antioxidants, inhibitors of the ceramide pathway, or modifiers of membrane fluidity did not protect beta-cell mitochondria from FA exposure. However, significant protection was provided by co-application of the unsaturated FA oleate in a phosphatidylinositol 3-kinase-dependent manner. Characterization of MPT pore opening in response to moderate palmitate treatment revealed the opening of a unique form of MPT in beta-cells as it encompassed features of both low and high conductance MPT states. Specifically, this MPT showed solute selectivity, characteristic of a low conductance MPT; however, it affected mitochondrial respiration and membrane potential in a way typical of a high conductance MPT. Activation of the full-size/high conductance form of MPT required application of high levels of FA that reduced growth and initiated apoptosis. These findings suggest that in the beta-cell, MPTs can act as both initiators of cell death and as versatile modulators of cell metabolism, depending on the mode of the MPT pore induced.
    Journal of Biological Chemistry 04/2008; 283(12):7936-48. · 4.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Visinin-like protein-1 (VILIP-1) is a member of the neuronal Ca2+ sensor protein family that modulates Ca2+-dependent cell signaling events. VILIP-1, which is expressed primarily in the brain, increases cAMP formation in neural cells by modulating adenylyl cyclase, but its functional role in other tissues remains largely unknown. In this study, we demonstrate that VILIP-1 is expressed in murine pancreatic islets and beta-cells. To gain insight into the functions of VILIP-1 in beta-cells, we used both overexpression and small interfering RNA knockdown strategies. Overexpression of VILIP-1 in the MIN6 beta-cell line or isolated mouse islets had no effect on basal insulin secretion but significantly increased glucose-stimulated insulin secretion. cAMP accumulation was elevated in VILIP-1-overexpressing cells, and the protein kinase A inhibitor H-89 attenuated increased glucose-stimulated insulin secretion. Overexpression of VILIP-1 in isolated mouse beta-cells increased cAMP content accompanied by increased cAMP-responsive element-binding protein gene expression and enhanced exocytosis as detected by cell capacitance measurements. Conversely, VILIP-1 knockdown by small interfering RNA caused a reduction in cAMP accumulation and produced a dramatic increase in preproinsulin mRNA, basal insulin secretion, and total cellular insulin content. The increase in preproinsulin mRNA in these cells was attributed to enhanced insulin gene transcription. Taken together, we have shown that VILIP-1 is expressed in pancreatic beta-cells and modulates insulin secretion. Increased VILIP-1 enhanced insulin secretion in a cAMP-associated manner. Down-regulation of VILIP-1 was accompanied by decreased cAMP accumulation but increased insulin gene transcription.
    Journal of Biological Chemistry 09/2006; 281(31):21942-53. · 4.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The antioxidant compound alpha-lipoic acid (alpha-LA) possesses antidiabetic and anti-obesity properties. In the hypothalamus, alpha-LA suppresses appetite and prevents obesity by inhibiting AMP-activated protein kinase (AMPK). Given the therapeutic potential of alpha-LA for the treatment of type 2 diabetes and obesity, and the importance of AMPK in beta cells, we examined the effect of alpha-LA on pancreatic beta cell function. Isolated rat islets and MIN6 beta cells were treated acutely (15-90 min) or chronically (18-24 h) with alpha-LA or the known AMPK-activating compounds 5'-amino-imidazole-4-carboxamide ribonucleoside (AICAR) and metformin. Insulin secretion, the AMPK-signalling pathway, mitochondrial function and cell growth were assessed. Acute or chronic treatment of islets and MIN6 cells with alpha-LA led to dose-dependent rises in phosphorylation of the AMPK alpha-subunit and acetyl CoA carboxylase. Chronic exposure to alpha-LA, AICAR or metformin caused a reduction in insulin secretion. alpha-LA inhibited the p70 s6 kinase translational control pathway, and inhibited MIN6 growth in a manner similar to rapamycin. Unlike AICAR and metformin, alpha-LA also acutely inhibited insulin secretion. Examination of the effect of alpha-LA on mitochondrial function showed that acute treatment with this compound elevated reactive oxygen species (ROS) production and enhanced mitochondrial depolarisation induced by Ca(2+). This study is the first to demonstrate that alpha-LA directly affects beta cell function. The chronic effects of alpha-LA include AMPK activation and reductions in insulin secretion and content, and cell growth. Acutely, alpha-LA also inhibits insulin secretion, an effect probably involving the ROS-induced impairment of mitochondrial function.
    Diabetologia 08/2006; 49(7):1587-98. · 6.49 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In pancreatic beta-cells Zn(2+) is crucial for insulin biosynthesis and exocytosis. Despite this, little is known about mechanisms of Zn(2+) transport into beta-cells or the regulation and compartmentalization of Zn(2+) within this cell type. Evidence suggests that Zn(2+) in part enters neurons and myocytes through specific voltage-gated calcium channels (VGCC). Using a Zn(2+)-selective fluorescent dye with high affinity and quantum yield, FluoZin-3 AM and the plasma membrane potential dye DiBAC(4)(3) we applied fluorescent microscopy techniques for analysis of Zn(2+)-accumulating pathways in mouse islets, dispersed islet cells, and beta-cell lines (MIN6 and beta-TC6f7 cells). Because the stimulation of insulin secretion is associated with cell depolarization, Zn(2+) (5-10 mum) uptake was analyzed under basal (1 mm glucose) and stimulatory (10-20 mm glucose, tolbutamide, tetraethylammonium, and high K(+)) conditions. Under both basal and depolarized states, beta-cells were capable of Zn(2+) uptake, and switching from basal to depolarizing conditions resulted in a marked increase in the rate of Zn(2+) accumulation. Importantly, L-type VGCC (L-VGCC) blockers (verapamil, nitrendipine, and nifedipine) as well as nonspecific inhibitors of Ca(2+) channels, Gd(3+) and La(3+), inhibited Zn(2+) uptake in beta-cells under stimulatory conditions with little or no change in Zn(2+) accumulation under low glucose conditions. To determine the mechanism of VGCC-independent Zn(2+) uptake the expression of a number of ZIP family Zn(2+) transporter mRNAs in islets and beta-cells was investigated. In conclusion, we demonstrate for the first time that, in part, Zn(2+) transport into beta-cells takes place through the L-VGCC. Our investigation demonstrates direct Zn(2+) accumulation in insulin-secreting cells by two pathways and suggests that the rate of Zn(2+) transport across the plasma membrane is dependent upon the metabolic status of the cell.
    Journal of Biological Chemistry 05/2006; 281(14):9361-72. · 4.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In pancreatic β-cells Zn2+ is crucial for insulin biosynthesis and exocytosis. Despite this, little is known about mechanisms of Zn2+ transport into β-cells or the regulation and compartmentalization of Zn2+ within this cell type. Evidence suggests that Zn2+ in part enters neurons and myocytes through specific voltage-gated calcium channels (VGCC). Using a Zn2+-selective fluorescent dye with high affinity and quantum yield, FluoZin-3 AM and the plasma membrane potential dye DiBAC4(3) we applied fluorescent microscopy techniques for analysis of Zn2+-accumulating pathways in mouse islets, dispersed islet cells, and β-cell lines (MIN6 and β-TC6f7 cells). Because the stimulation of insulin secretion is associated with cell depolarization, Zn2+ (5-10 μm) uptake was analyzed under basal (1 mm glucose) and stimulatory (10-20 mm glucose, tolbutamide, tetraethylammonium, and high K+) conditions. Under both basal and depolarized states, β-cells were capable of Zn2+ uptake, and switching from basal to depolarizing conditions resulted in a marked increase in the rate of Zn2+ accumulation. Importantly, L-type VGCC (L-VGCC) blockers (verapamil, nitrendipine, and nifedipine) as well as nonspecific inhibitors of Ca2+ channels, Gd3+ and La3+, inhibited Zn2+ uptake in β-cells under stimulatory conditions with little or no change in Zn2+ accumulation under low glucose conditions. To determine the mechanism of VGCC-independent Zn2+ uptake the expression of a number of ZIP family Zn2+ transporter mRNAs in islets and β-cells was investigated. In conclusion, we demonstrate for the first time that, in part, Zn2+ transport into β-cells takes place through the L-VGCC. Our investigation demonstrates direct Zn2+ accumulation in insulin-secreting cells by two pathways and suggests that the rate of Zn2+ transport across the plasma membrane is dependent upon the metabolic status of the cell.
    Journal of Biological Chemistry 04/2006; 281(14):9361-9372. · 4.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Phosphoinositide 3-kinase (PI3 kinase) has been implicated in G protein-coupled receptor regulation of pancreatic beta-cell growth and glucose-stimulated insulin secretion. The G protein-activated p110gamma isoform of PI3 kinase was detected in insulinoma cells, mouse islets, and human islets. In 7- to 10-wk-old mice, knockout of p110gamma reduced the plasma insulin response to ip glucose injection and impaired first and second phase glucose-stimulated insulin secretion from pancreata perfused ex vivo. The p110gamma -/- mice responded to preinjection with the glucagon-like peptide-1 receptor agonist exendin 4, such that plasma glucose and insulin responses to ip glucose injection were not different from wild types. Mice lacking p110gamma were not diabetic and were only slightly glucose intolerant (ip glucose injection) compared with wild types, in part due to enhanced responsiveness to insulin as determined by an ip insulin tolerance test. Despite severely reduced insulin secretion in these animals, the p110gamma -/- mice had greater pancreatic insulin content, and an increased beta-cell mass due to beta-cell hypertrophy. These surprising results suggest that the G protein-coupled p110gamma isoform of PI3 kinase is not central to the development or maintenance of sufficient beta-cell mass but positively regulates glucose-stimulated insulin secretion.
    Endocrinology 10/2004; 145(9):4078-83. · 4.72 Impact Factor