Katja Heilmann

Universität Potsdam, Potsdam, Brandenburg, Germany

Are you Katja Heilmann?

Claim your profile

Publications (13)42.77 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Isolation of recombinant antibodies from antibody libraries is commonly performed by different molecular display formats including phage display and ribosome display or different cell-surface display formats. We describe a new method which allows the selection of Escherichia coli cells producing the required single chain antibody by cultivation in presence of ampicillin conjugated to the antigen of interest. The method utilizes the neutralization of the conjugate by the produced single chain antibody which is secreted to the periplasm. Therefore, a new expression system based on the pET26b vector was designed and a library was constructed. The method was successfully established first for the selection of E. coli BL21 Star (DE3) cells expressing a model single chain antibody (anti-fluorescein) by a simple selection assay on LB-agar plates. Using this selection assay, we could identify a new single chain antibody binding biotin by growing E. coli BL21 Star (DE3) containing the library in presence of a biotin-ampicillin conjugate. In contrast to methods as molecular or cell surface display our selection system applies the soluble single chain antibody molecule and thereby avoids undesired effects, e.g. by the phage particle or the yeast fusion protein. By selecting directly in an expression strain, production and characterization of the selected single chain antibody is possible without any further cloning or transformation steps.
    Immunology letters 02/2013; · 2.91 Impact Factor
  • Source
  • Katrin Messerschmidt, Katja Heilmann
    [Show abstract] [Hide abstract]
    ABSTRACT: The generation of antibodies with designated specificity requires cost-intensive and time-consuming screening procedures. Here we present a new method by which hybridoma cells can be selected based on the specificity of the produced antibody by the use of antigen-toxin-conjugates thus eliminating the need of a screening procedure. Initial experiments were done with methotrexate as low molecular weight toxin and fluorescein as model antigen. Methotrexate and a methotrexate-fluorescein conjugate were characterized regarding their toxicity. Afterwards the effect of the fluorescein-specific antibody B13-DE1 on the toxicity of the methotrexate-fluorescein conjugate was determined. Finally, first results showed that hybridoma cells that produce fluorescein specific antibodies are able to grow in the presence of fluorescein-toxin-conjugates.
    Journal of immunological methods 10/2012; · 2.35 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Viral proteins are highly antigenic and known as potent stimulators of adaptive immune responses. This mechanism is often used for biotechnological applications in monoclonal antibody production resulting in high-affinity IgG antibodies in most cases. The aim of this study was to increase antigen-specific IgA antibody levels in mice in order to generate monoclonal IgA antibodies by hybridoma technology. For this purpose, hamster polyomavirus (HaPyV) major capsid protein VP1 was used to immunize mice by different routes in order to induce VP1-specific IgA titers. Recombinant HaPyV-VP1 was generated in Escherichia coli and administered intraperitoneally, orally, and intrarectally. VP1-specific antibodies were determined by ELISA in sera and organ culture supernatants. We found a significant increase of HaPyV-VP1-specific IgAs in spleen organ cultures after rectal immunization of mice but not in cultures of mesenteric lymph nodes, colon, or Peyer's patches. In contrast, oral and intraperitoneal immunization did not provide an appropriate specific IgA induction at all. These results show that specific IgA antibodies can be induced by intrarectal immunization in the spleen. The generation of monoclonal IgA antibodies with well-defined properties is a useful tool for the investigation of mucosal immune responses or autoimmune diseases and extends the spectrum of antibodies with specific effector functions.
    European journal of microbiology & immunology. 09/2012; 2(3):231-8.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sperm proteins of marine sessile invertebrates have been extensively studied to understand the molecular basis of reproductive isolation. Apart from molecules such as bindin of sea urchins or lysin of abalone species, the acrosomal protein M7 lysin of Mytilus edulis has been analyzed. M7 lysin was found to be under positive selection, but mechanisms driving the evolution of this protein are not fully understood. To explore functional aspects, this study investigated the protein expression pattern of M7 and M6 lysin in gametes and somatic tissue of male and female M. edulis. The study employs a previously published monoclonal antibody (G26-AG8) to investigate M6 and M7 lysin protein expression, and explores expression of both genes. It is shown that these proteins and their encoding genes are expressed in gametes and somatic tissue of both sexes. This is in contrast to sea urchin bindin and abalone lysin, in which gene expression is strictly limited to males. Although future studies need to clarify the functional importance of both acrosomal proteins in male and female somatic tissue, new insights into the evolution of sperm proteins in marine sessile invertebrates are possible. This is because proteins with male-specific expression (bindin, lysin) might evolve differently than proteins with expression in both sexes (M6/M7 lysin), and the putative function of both proteins in females opens the possibility that the evolution of M6/M7 lysin is under sexual antagonistic selection, for example, mutations beneficial to the acrosomal function that are less beneficial the function in somatic tissue of females.
    Molecular Reproduction and Development 06/2012; 79(8):517-24. · 2.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The production of monoclonal antibodies by hybridoma technology is dependent on lymphocytes taken from vertebrates which have to be immunized against the corresponding antigen. We present here our first experiments which should allow the replacement of this in vivo immunization step by an in vitro immunization procedure. This work provides new possibilities for the specific activation of immune cells in order to use them for the generation of antibodies which are not of murine origin. Bone marrow-derived dendritic cells were loaded with antigen and co-cultured with naïve T and B lymphocytes of non-immunized mice. The interaction and activation of the different cell types were investigated by measuring the expression of specific cell surface markers, the release of activation-dependent interleukins and the secretion of antigen-specific antibodies. We could demonstrate that dendritic cells process and present antigen fragments and activate T cells, that T cells proliferate and release activation-induced interleukins, and that B cells maturate under the influence of activated T cells and secrete antigen-specific antibodies.
    Journal of Biotechnology 12/2011; 156(3):173-81. · 3.18 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Osteopontin (OPN) is characterized as a major amplifier of Th1-immune responses. However, its role in intestinal inflammation is currently unknown. We found considerably raised OPN levels in blood of wild-type (WT) mice with dextran sodium sulfate (DSS)-induced colitis. To identify the role of this mediator in intestinal inflammation, we analysed experimental colitis in OPN-deficient (OPN(-/-)) mice. In the acute phase of colitis these mice showed more extensive colonic ulcerations and mucosal destruction than WT mice, which was abrogated by application of soluble OPN. Within the OPN(-/-) mice, infiltrating macrophages were not activated and showed impaired phagocytosis. Reduced mRNA expression of interleukin (IL)-1 beta and matrix metalloproteinases was found in acute colitis of OPN(-/-) mice. This was associated with decreased blood levels of IL-22, a Th17 cytokine that may mediate epithelial regeneration. However, OPN-(/-) mice showed increased serum levels of tumour necrosis factor (TNF)-alpha, which could be due to systemically present lipopolysaccharide translocated to the gut. In contrast to acute colitis, during chronic DSS-colitis, which is driven by a Th1 response of the lamina propria infiltrates, OPN(-/-) mice were protected from mucosal inflammation and demonstrated lower serum levels of IL-12 than WT mice. Furthermore, neutralization of OPN in WT mice abrogated colitis. Lastly, we demonstrate that in patients with active Crohn's disease OPN serum concentration correlated significantly with disease activity. Taken together, we postulate a dual function of OPN in intestinal inflammation: During acute inflammation OPN seems to activate innate immunity, reduces tissue damage and initiates mucosal repair whereas during chronic inflammation it promotes the Th1 response and strengthens inflammation.
    Journal of Cellular and Molecular Medicine 06/2009; 13(6):1162-74. · 4.75 Impact Factor
  • Source
    Gastroenterology 01/2008; 134(4):A42 - A43. · 12.82 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Deletion of exon CD44v7 abrogates experimental colitis by apoptosis induction in intestinal mononuclear cells. Here we show that CD44v7 expression was upregulated upon CD40 ligation in human mononuclear cells, and examined whether ligation of CD44v7 also affects activation and apoptosis in lamina propria mononuclear cells (LPMC) from Crohn's disease (CD) patients. Thirty five patients with chronic inflammatory bowel disease (IBD), fourteen controls and four patients with diverticulitis were evaluated. CD44v7 was upregulated predominantly in the inflamed mucosa of CD patients. Furthermore, incubation with an anti-CD44v7 antibody induced apoptosis in LPMC isolated from inflamed mucosa of CD patients, but not from non-inflamed mucosa, from patients with ulcerative colitis (UC) or from normal controls. CD40 ligation and simultaneous incubation with anti-CD44v7 significantly downregulated CD80 in dendritic cells, thus inhibiting a critical second signal for naive T-cell activation. The apoptotic signal was mediated via the intrinsic mitochondrial pathway with decreased Bcl-2 and increased 7A6 (a mitochondrial membrane protein) expression. It was Fas independent and required caspases-3 and -9 activation. The process is highly specific for macrophage activation via CD40. These findings point to a novel mechanism of apoptosis induction in CD patients mediated by CD44v7 ligation.
    Cell Death and Differentiation 09/2007; 14(8):1542-51. · 8.37 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The influence of coating polystyrene tissue culture plates with different proteins on murine hybridoma cell growth and antibody production was investigated. Fibronectin, collagen I, bovine serum albumin and laminin were used to coat NUNC® and COSTAR® cell culture plates. Cell number and antibody concentration in culture fluids were quantified as indicators for cell viability, proliferation and productivity. Adhesive behaviour, morphology, expression of surface receptors of hybridoma cells and the presence of tyrosine-phosphorylated proteins in cell lysates were characterized by cell adhesion experiments, microscopy, flow cytometry and Western Blot analysis.It was shown that coatings with fibronectin (0.2μg/ml) lead to a substantial improvement of cell growth by 50–70% and an increase of monoclonal antibody production by 100–120%.Collagen I coatings showed an improvement in cell growth by 30–70% and by 60% for the production of monoclonal antibodies. Coatings with BSA and laminin had minor effects on these parameters. It was found that the hybridoma cell lines used in this study did not express the α2-chain of the α2β1-integrin, which is responsible for binding to collagen and laminin.However, the presence of β1-integrin on the cell surface was shown, which should enable hybridoma cells to bind fibronectin. We propose, therefore, that fibronectin adsorption to cell culture materials may be a promising approach to enhance the production of monoclonal antibodies by cultivated hybridoma cells.
    Biochemical Engineering Journal - BIOCHEM ENG J. 01/2007; 35(3):301-308.
  • [Show abstract] [Hide abstract]
    ABSTRACT: The multiplication and antibody production of murine hybridoma cells cultured on five different polymer membranes were tested and compared with conventional tissue culture polystyrene (TCPS). Membranes were prepared from polyacrylonitrile (PAN) and acrylonitrile copolymerized with N-vinylpyrrolidone (NVP20, NVP30), Na-methallylsulfonate (NaMAS) and N-(3-amino-propyl-methacrylamide-hydrochloride) (APMA). Cell number and antibody concentration were quantified as criteria for viability and productivity. Adhesion of hybridoma cells was characterized by vital and scanning electron microscopy. The results suggest that a strong adhesion of cells, observed on APMA and TCPS, increased cell growth but reduced monoclonal antibody production. In contrast membranes with lowered adhesivity such as NVP20 provided favourable conditions for monoclonal antibody production. In addition it was shown that this membrane also possessed a minor fouling as indicated by the low decrease of water flux across the membrane after protein adsorption. It was concluded that NVP20 could be a suitable material for the development of hollow fibre membranes for bioreactors.
    Journal of Biotechnology 03/2005; 115(3):291-301. · 3.18 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Monoclonal antibodies are unique binding molecules with a high specificity for their target. This makes them a very powerful tool for research, diagnostic and therapeutic applications. Modifications of structure and effector functions as well as a faster biotechnical production lead to an extended application in biomedicine.
    BioSpektrum 18(2).
  • [Show abstract] [Hide abstract]
    ABSTRACT: Sperm proteins of the marine sessile mussels of the Mytilus edulis species complex are models to investigate reproductive isolation and speciation. This study aimed at identifying sperm proteins and their corresponding genes. This was aided by the use of monoclonal antibodies that preferentially bind to yet unknown sperm molecules. By identifying their target molecules, this approach identified proteins with relevance to Mytilus sperm function. This procedure identified 16 proteins, for example, enkurin, laminin, porin and heat shock proteins. The potential use of these proteins as genetic markers to study reproductive isolation is exemplified by analysing the enkurin locus. Enkurin evolution is driven by purifying selection, the locus displays high levels of intraspecific variation and species-specific alleles group in distinct phylogenetic clusters. These findings characterize enkurin as informative candidate biomarker for analyses of clinal variation and differential introgression in hybrid zones, for example, to understand determinants of reproductive isolation in Baltic Mytilus populations.
    Marine Biology 159(10). · 2.39 Impact Factor