Are you Daisuke Tanaka?

Claim your profile

Publications (2)1.74 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: The present study aimed to clarify the efficacy of decoding training focusing on the correspondence between written symbols and their readings for children with difficulty reading hiragana (Japanese syllabary). Thirty-five children with difficulty reading hiragana were selected from among 367 first-grade elementary school students using a reading aloud test and were then divided into intervention (n=15) and control (n=20) groups. The intervention comprised 5 minutes of decoding training each day for a period of 3 weeks using an original program on a personal computer. Reading time and number of reading errors in the reading aloud test were compared between the groups. The intervention group showed a significant shortening of reading time (F(1,33)=5.40, p<0.05, two-way ANOVA) compared to the control group. However, no significant difference in the number of errors was observed between the two groups. Ten children in the control group who wished to participate in the decoding training were included in an additional study;as a result, improvement of the number of reading errors was observed (t= 2.863, p< 0.05, paired t test), but there was no improvement in reading time. Decoding training was found to be effective for improving both reading time and reading errors in children with difficulty reading hiragana.
    No to hattatsu. Brain and development 05/2013; 45(3):239-42.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Functional magnetic resonance imaging (MRI) studies involve normalization so that the brains of different subjects can be described using the same coordinate system. However, standard brain templates, including the Montreal Neurological Institute (MNI) template that is most frequently used at present, were created based on the brains of Western adults. Because morphological characteristics of the brain differ by race and ethnicity and between adults and children, errors are likely to occur when data from the brains of non-Western individuals are processed using these templates. Therefore, this study was conducted to collect basic data for the creation of a Japanese pediatric standard brain. Participants in this study were 45 healthy children (contributing 65 brain images) between the ages of 6 and 9years, who had nothing notable in their perinatal and other histories and neurological findings, had normal physical findings and cognitive function, exhibited no behavioral abnormalities, and provided analyzable MR images. 3D-T1-weighted images were obtained using a 1.5-T MRI device, and images from each child were adjusted to the reference image by affine transformation using SPM8. The lengths were measured and compared with those of the MNI template. The Western adult standard brain and the Japanese pediatric standard brain obtained in this study differed greatly in size, particularly along the anteroposterior diameter and in height, suggesting that the correction rates are high, and that errors are likely to occur in the normalization of pediatric brain images. We propose that the use of the Japanese pediatric standard brain created in this study will improve the accuracy of identification of brain regions in functional brain imaging studies involving children.
    Brain & development 06/2012; · 1.74 Impact Factor