Ji-An Pan

Wuhan University, Wu-han-shih, Hubei, China

Are you Ji-An Pan?

Claim your profile

Publications (2)5.1 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: The chemokine receptor CXCR4 is one of the major coreceptors for human immunodeficiency virus type 1 (HIV-1) and considered as an important therapeutic target. Knockdown of CXCR4 by RNA interference has emerged as a promising strategy for combating HIV-1 infection. However, there is a potential drawback to this strategy as undesired side effects may occur due to the loss of natural function of CXCR4. In this study, we developed a novel approach using a single lentiviral vector to express simultaneously CXCR4 dual-shRNAs and an shRNA-resistant CXCR4 mutant possessing the most possible natural functions of CXCR4 and reduced HIV-1 coreceptor activity. Via this approach we achieved the replacement of endogenous CXCR4 by CXCR4 mutant P191A that could compensate the functional loss of endogenous CXCR4 and significant reduction of HIV-1 replication by 59.2 %. Besides, we demonstrated that construction of recombinant lentiviral vector using 2A peptide-based strategy has significant advantages over using additional promoter-based strategy, including increase of lentivirus titer and avoidance of promoter competition. Therefore, the novel approach to block HIV-1 coreceptor CXCR4 without impairing its normal function provides a new strategy for CXCR4-targeted therapeutics for HIV-1 infection and potential universal applications to knock down a cellular protein in non-toxic manner.
    Molecular Biotechnology 05/2014; 56(10). DOI:10.1007/s12033-014-9768-7 · 2.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Coronaviruses are the etiological agents of respiratory and enteric diseases in humans and livestock, exemplified by the life-threatening severe acute respiratory syndrome (SARS) caused by SARS coronavirus (SARS-CoV). However, effective means for combating coronaviruses are still lacking. The interaction between nonstructural protein (nsp) 10 and nsp16 has been demonstrated and the crystal structure of SARS-CoV nsp16/10 complex has been revealed. As nsp10 acts as an essential trigger to activate the 2'-O-methyltransferase activity of nsp16, short peptides derived from nsp10 may have inhibitory effect on viral 2'-O-methyltransferase activity. In this study, we revealed that the domain of aa 65-107 of nsp10 was sufficient for its interaction with nsp16 and the region of aa 42-120 in nsp10, which is larger than the interaction domain, was needed for stimulating the nsp16 2'-O-methyltransferase activity. We further showed that two short peptides derived from the interaction domain of nsp10 could inhibit the 2'-O-methyltransferase activity of SARS-CoV nsp16/10 complex, thus providing a novel strategy and proof-of-principle study for developing peptide inhibitors against SARS-CoV.
    Virus Research 05/2012; 167(2):322-8. DOI:10.1016/j.virusres.2012.05.017 · 2.83 Impact Factor