Viola Vogel

University of Pennsylvania, Philadelphia, PA, United States

Are you Viola Vogel?

Claim your profile

Publications (162)947.11 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: We present a generic patterning process by which biomolecules in a passivated background are patterned directly from physiological buffer to microfabricated surfaces without the need for further processing. First, nitrodopamine-mPEG is self-assembled to selectively render TiO2 patterns non-fouling to biomolecule adsorption on hydrophilic and adhesive glass surfaces. After the controlled TiO2 passivation, the biomolecules can be directly adsorbed from solution in a single step creating large scale micropatterned and highly homogeneous arrays of biomolecules with very high pattern definition. We demonstrate the formation of fluid supported lipid bilayers (SLBs) down to the single μm-level limited only by the photolithographic process. Non-specific adsorption of lipid vesicles to the TiO2 background was found to be almost completely suppressed. The SLB patterns can be further selectively functionalized with retained mobility, which we demonstrate through biotin–streptavidin coupling. We envision this single step patterning approach to be very beneficial for membrane-based biosensors and for pattering of cells on a passivated background with complex, sub-cellular geometries; in each application the adherent areas have a tunable mobility of interaction sites controlled by the fluidity of the membrane.
    Biomater. Sci. 09/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: An increasing body of evidence suggests important roles of extracellular matrix (ECM) in regulating stem cell fate. This knowledge can be exploited in tissue engineering applications for the design of ECM scaffolds appropriate to direct stem cell differentiation. By probing the conformation of fibronectin (Fn) using fluorescence resonance energy transfer (FRET), we show here that heparin treatment of the fibroblast-derived ECM scaffolds resulted in more extended conformations of fibrillar Fn in ECM. Since heparin is a highly negatively charged molecule while fibronectin contains segments of positively charged modules, including FnIII13, electrostatic interactions between Fn and heparin might interfere with residual quaternary structure in relaxed fibronectin fibers thereby opening up buried sites. The conformation of modules FnIII12–14 in particular, which contain one of the heparin binding sites as well as binding sites for many growth factors, may be activated by heparin, resulting in alterations in growth factor binding to Fn. Indeed, upregulated osteogenic differentiation was observed when hMSCs were seeded on ECM scaffolds that had been treated with heparin and were subsequently chemically fixed. In contrast, either rigidifying relaxed fibers by fixation alone, or heparin treatment without fixation had no effect. We hypothesize that fibronectin's conformations within the ECM are activated by heparin such as to coordinate with other factors to upregulate hMSC osteogenic differentiation. Thus, the conformational changes of fibronectin within the ECM could serve as a ‘converter’ to tune hMSC differentiation in extracellular matrices. This knowledge could also be exploited to promote osteogenic stem cell differentiation on biomedical surfaces.
    Biomater. Sci. 08/2014;
  • Source
    Dataset: Movie M1
  • Source
    Dataset: Movie M2
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Phenotypic heterogeneity can confer clonal groups of organisms with new functionality. A paradigmatic example is the bistable expression of virulence genes in Salmonella typhimurium, which leads to phenotypically virulent and phenotypically avirulent subpopulations. The two subpopulations have been shown to divide labor during S. typhimurium infections. Here, we show that heterogeneous virulence gene expression in this organism also promotes survival against exposure to antibiotics through a bet-hedging mechanism. Using microfluidic devices in combination with fluorescence time-lapse microscopy and quantitative image analysis, we analyzed the expression of virulence genes at the single cell level and related it to survival when exposed to antibiotics. We found that, across different types of antibiotics and under concentrations that are clinically relevant, the subpopulation of bacterial cells that express virulence genes shows increased survival after exposure to antibiotics. Intriguingly, there is an interplay between the two consequences of phenotypic heterogeneity. The bet-hedging effect that arises through heterogeneity in virulence gene expression can protect clonal populations against avirulent mutants that exploit and subvert the division of labor within these populations. We conclude that bet-hedging and the division of labor can arise through variation in a single trait and interact with each other. This reveals a new degree of functional complexity of phenotypic heterogeneity. In addition, our results suggest a general principle of how pathogens can evade antibiotics: Expression of virulence factors often entails metabolic costs and the resulting growth retardation could generally increase tolerance against antibiotics and thus compromise treatment.
    PLoS biology. 08/2014; 12(8):e1001928.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Nanoshuttles powered by the molecular motor kinesin have the potential to capture and concentrate rare molecules from solution as well as to transport, sort and assemble them in a high-throughput manner. One long-thought-of goal has been the realisation of a molecular assembly line with nanoshuttles as workhorses. To harness them for this purpose might allow the community to engineer novel materials and nanodevices. The central milestone towards this goal is to expose nanoshuttles to a series of different molecules or building blocks and load them sequentially to build hierarchical structures, macromolecules or materials. Here, we addressed this challenge by exploiting the synergy of two so far mostly complementary techniques, nanoshuttle-mediated active transport and pressure-driven passive transport, integrated into a single microfluidic device to demonstrate the realisation of a molecular assembly line. Multiple step protocols can thus be miniaturised to a highly parallelised and autonomous working lab-on-a-chip: in each reaction chamber, analytes or building blocks are captured from solution and are then transported by nanoshuttles across fluid flow boundaries in the next chamber. Cargo can thus be assembled, modified, analysed and eventually unloaded in a procedure that requires only one step by its operator.
    Lab on a Chip 07/2014; · 5.70 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A simple and robust method termed "fiber-assisted molding (FAM)" is presented to create biomimetic three-dimensional surfaces with controllable curvature and helical twist. The alignment of muscle fibrils and the assembly of helically patterned extracellular matrix by cells demonstrate the potential of this method for tissue engineering and other materials science applications.
    Small 07/2014; · 7.82 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A straightforward strategy is presented for the site-specific incorporation of fluorophores or reactive probes into the extracellular matrix (ECM) protein fibronectin (Fn) by using the enzyme-catalyzed transamidation by activated factor XIII. Characterization by SDS-PAGE, western blotting, absorption measurements, mass spectrometry, and stepwise photobleaching for labeling quantification at the single-molecule level showed that the labeling was efficient and restricted to the N-terminal tails. The introduction of labels did not interfere with Fn fibrillogenesis, as verified by the incorporation of fluorescently labeled Fn into ECM and manually pulled Fn fibers. Site-specific incorporation of an azide was used to create a template for bioorthogonal click chemistry reactions in a second bioconjugation step, thus offering versatile modification and application possibilities in the context of matrix biology and tissue engineering.
    ChemBioChem 06/2014; · 3.74 Impact Factor
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: a Adsorbed proteins that promote cell adhesion mediate the response of cells to biomaterials and scaffolds. As proteins undergo conformational changes upon surface adsorption, their functional display may be significantly affected by surface chemistry or solution conditions during the adsorption process. A high-resolution localization microscopy technique is extended here to probe the conformation of individual fibronectin (Fn) molecules at the glass–water interface under physiological buffer conditions. To map dis-tances, four available cysteines located on the modules FnIII 7 and FnIII 15 of dimeric Fn were site-specifi-cally labeled with Cy3B, and their relative positions were determined by stepwise photobleaching with nanometer precision. The four labels on single Fn molecules did not show a uniform or linear arrange-ment. The distances between label positions were distributed asymmetrically around 33 nm with a tail towards higher distances. Exposure of Fn to denaturing solution conditions during adsorption increased the average distances up to 43 nm for 4 M guanidinium HCl, while changing the solution conditions after the adsorption had no effect, indicating that the observed intra-molecular distances are locked-in during the adsorption process. Also surface coatings of different hydrophobicity altered the conformational distribution, shifting label distances from a median of 24 nm on hydrophilic to 49 nm on hydrophobic surfaces. These results further highlight that the conformation of macromolecules at interfaces depends on the adsorption history. While illustrated here for surface adsorbed Fn, the power of localization-based microscopy extends the repertoire of techniques to characterize biomolecules at interfaces.
    Journal of Biomaterials Science. 02/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Early wound healing is associated with fibroblasts assembling a provisional fibronectin-rich extracellular matrix (ECM), which is subsequently remodeled and interlaced by type I collagen. This exposes fibroblasts to time-variant sets of matrices during different stages of wound healing. Our goal was thus to gain insight into the ECM-driven functional regulation of human foreskin fibroblasts (HFFs) being either anchored to a fibronectin (Fn) or to a collagen-decorated matrix, in the absence or presence of cyclic mechanical strain. While the cells reoriented in response to the onset of uniaxial cyclic strain, cells assembled exogenously added Fn with a preferential Fn-fiber alignment along their new orientation. Exposure of HFFs to exogenous Fn resulted in an increase in matrix metalloproteinase (MMP) expression levels, i.e. MMP-15 (RT-qPCR), and MMP-9 activity (zymography), while subsequent exposure to collagen slightly reduced MMP-15 expression and MMP-9 activity compared to Fn-exposure alone. Cyclic strain upregulated Fn fibrillogenesis and actin stress fiber formation, but had comparatively little effect on MMP activity. We thus propose that the appearance of collagen might start to steer HFFs towards homeostasis, as it decreased both MMP secretion and the tension of Fn matrix fibrils as assessed by Fluorescence Resonance Energy Transfer. These results suggest that HFFs might have a high ECM remodeling or repair capacity in contact with Fn alone (early event), which is reduced in the presence of Col1 (later event), thereby down-tuning HFF activity, a processes which would be required in a tissue repair process to finally reach tissue homeostasis.
    Matrix Biology. 01/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Sessile bacteria adhere to engineered surfaces and host tissues and pose a substantial clinical and economical risk when growing into biofilms. Most engineered and biological interfaces are of chemically heterogeneous nature and provide adhesive islands for bacterial attachment and growth. To mimic either defects in a surface coating of biomedical implants or heterogeneities within mucosal layers (Peyer's patches), we embedded micrometre-sized adhesive islands in a poly(ethylene glycol) biopassive background. We show experimentally and computationally that filamentation of Escherichia coli can significantly accelerate the bacterial surface colonization under physiological flow conditions. Filamentation can thus provide an advantage to a bacterial population to bridge non-adhesive distances exceeding 5 μm. Bacterial filamentation, caused by blocking of bacterial division, is common among bacterial species and can be triggered by environmental conditions or antibiotic treatment. While great awareness exists that the build-up of antibiotic resistance serves as intrinsic survival strategy, we show here that antibiotic treatment can actually promote surface colonization by triggering filamentation, which in turn prevents daughter cells from being washed away. Our combined microfabrication and computational approaches provide quantitative insights into mechanisms that enable biofouling of biopassive surfaces with embedded adhesive spots, even for spot distances that are multiples of the bacterial length.
    New Journal of Physics 12/2013; 15. · 4.06 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Bacterial adhesion and biofilm growth can cause severe biomaterial-related infections and failure of medical implants. To assess the antifouling properties of engineered coatings, advanced approaches are needed for in situ monitoring of bacterial viability and growth kinetics as the bacteria colonize a surface. Here, we present an optimized protocol for optical real-time quantification of bacterial viability. To stain living bacteria, we replaced the commonly used fluorescent dye SYTO(®) 9 with endogenously expressed eGFP, as SYTO(®) 9 inhibited bacterial growth. With the addition of nontoxic concentrations of propidium iodide (PI) to the culture medium, the fraction of live and dead bacteria could be continuously monitored by fluorescence microscopy as demonstrated here using GFP expressing Escherichia coli as model organism. The viability of bacteria was thereby monitored on untreated and bioactive dimethyloctadecyl[3-(trimethoxysilyl)propyl]ammonium chloride (DMOAC)-coated glass substrates over several hours. Pre-adsorption of the antimicrobial surfaces with serum proteins, which mimics typical protein adsorption to biomaterial surfaces upon contact with host body fluids, completely blocked the antimicrobial activity of the DMOAC surfaces as we observed the recovery of bacterial growth. Hence, this optimized eGFP/PI viability assay provides a protocol for unperturbed in situ monitoring of bacterial viability and colonization on engineered biomaterial surfaces with single-bacteria sensitivity under physiologically relevant conditions.
    Biointerphases 12/2013; 8(1):21. · 1.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: While stem cells can sense and respond to physical properties of their environment, the molecular aspects how physical information is translated into biochemical signals remain unknown. Here we show that human mesenchymal stem cells (hMSCs) harvest and assemble plasma fibronectin into their extracellular matrix (ECM) fibrils within 24 hours. hMSCs pro-actively pull on newly assembled fibronectin ECM fibrils, and the fibers are more stretched on rigid than on soft fibronectin-coated polyacrylamide gels. Culturing hMSCs on single stretched fibronectin fibers upregulates hMSC osteogenesis. Osteogenesis was increased when αvβ3 integrins were blocked on relaxed fibronectin fibers, and decreased when α5β1 integrins were blocked or when epidermal growth factor (EGF) receptor signaling was inhibited on stretched fibronectin fibers. This suggests that hMSCs utilize their own contractile forces to translate environmental cues into differential biochemical signals by stretching fibronectin fibrils. Mechanoregulation of fibronectin fibrils may thus serve as check point to regulate hMSC osteogenesis.
    Scientific Reports 08/2013; 3:2425. · 5.08 Impact Factor
  • Source
    Jörg Albuschies, Viola Vogel
    [Show abstract] [Hide abstract]
    ABSTRACT: Substrate-exploring functions of filopodia were previously suggested based on cell studies on flat surfaces, but their role in topography sensing especially within nanofibrillar environments remained elusive. Here we have grown highly flexible hairy silicon nanowires on micropatterned islands on otherwise flat glass surfaces and coated them both with the extracellular matrix (ECM) protein fibronectin. This allowed us to visualize how filopodia steer fundamental cell functions such as cell adhesion, spreading, migration and division in the absence of lamellipodia. Shortly after seeding, transient filopodia protrude from the still spherical cells. Once filopodia contact nanowires, they bend and align them, while most filopodia peel off from flat surfaces. A zipping mechanism regulated by traction forces is proposed to explain how force-induced changes in filopodia-substrate contact angles enable topography sensing, including the still elusive phenomenon of contact guidance. Filopodia thus play a central role in steering transient topographic preferences.
    Scientific Reports 04/2013; 3:1658. · 5.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although stem-cell therapies have been suggested for cardiac-regeneration after myocardial-infarction (MI), key-questions regarding the in-vivo cell-fate remain unknown. While most available animal-models require immunosuppressive-therapy when applying human cells, the fetal-sheep being pre-immune until day 75 of gestation has been proposed for the in-vivo tracking of human cells after intra-peritoneal transplantation. We introduce a novel intra-uterine myocardial-infarction model to track human mesenchymal stem cells after direct intra-myocardial transplantation into the pre-immune fetalsheep. Thirteen fetal-sheep (gestation age: 70–75 days) were included. Ten animals either received an intra-uterine induction of MI only (n = 4) or MI+intra-myocardial injection (IMI;n = 6) using micron-sized, iron-oxide (MPIO) labeled human mesenchymal stem cells either derived from the adipose-tissue (ATMSCs;n = 3) or the bone-marrow (BMMSCs;n = 3). Three animals received an intra-peritoneal injection (IPI;n = 3; ATMSCs;n = 2/BMMSCs;n = 1). All procedures were performed successfully and follow-up was 7–9 days. To assess human cell-fate, multimodal cell-tracking was performed via MRI and/or Micro-CT, Flow-Cytometry, PCR and immunohistochemistry. After IMI, MRI displayed an estimated amount of 16105–56105 human cells within ventricular-wall corresponding to the injection-sites which was further confirmed on Micro-CT. PCR and IHC verified intra-myocardial presence via detection of human-specific b-2-microglobulin, MHC-1, ALU-Sequence and anti- FITC targeting the fluorochrome-labeled part of the MPIOs. The cells appeared viable, integrated and were found in clusters or in the interstitial-spaces. Flow-Cytometry confirmed intra-myocardial presence, and showed further distribution within the spleen, lungs, kidneys and brain. Following IPI, MRI indicated the cells within the intra-peritoneal-cavity involving the liver and kidneys. Flow-Cytometry detected the cells within spleen, lungs, kidneys, thymus, bone-marrow and intraperitoneal lavage, but not within the heart. For the first time we demonstrate the feasibility of intra-uterine, intra-myocardial stem-cell transplantation into the pre-immune fetal-sheep after MI. Utilizing cell-tracking strategies comprising advanced imaging-technologies and in-vitro tracking-tools, this novel model may serve as a unique platform to assess human cell-fate after intra-myocardial transplantation without the necessity of immunosuppressive-therapy.
    PLoS ONE 03/2013; 8(3):57759. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Stem cells have been repeatedly suggested for cardiac regeneration after myocardial infarction (MI). However, the low retention rate of single cell suspensions limits the efficacy of current therapy concepts so far. Taking advantage of three dimensional (3D) cellular self-assembly prior to transplantation may be beneficial to overcome these limitations. In this pilot study we investigate the principal feasibility of intramyocardial delivery of in-vitro generated stem cell-based 3D microtissues (3D-MTs) in a porcine model. 3D-MTs were generated from iron-oxide (MPIO) labeled human adipose-tissue derived mesenchymal stem cells (ATMSCs) using a modified hanging-drop method. Nine pigs (33 ± 2 kg) comprising seven healthy ones and two with chronic MI in the left ventricle (LV) anterior wall were included. The pigs underwent intramyocardial transplantation of 16 × 10(3) 3D-MTs (1250 cells/MT; accounting for 2 × 10(7) single ATMSCs) into the anterior wall of the healthy pigs (n = 7)/the MI border zone of the infarcted (n = 2) of the LV using a 3D NOGA electromechanical mapping guided, transcatheter based approach. Clinical follow-up (FU) was performed for up to five weeks and in-vivo cell-tracking was performed using serial magnet resonance imaging (MRI). Thereafter, the hearts were harvested and assessed by PCR and immunohistochemistry. Intramyocardial transplantation of human ATMSC based 3D-MTs was successful in eight animals (88.8%) while one pig (without MI) died during the electromechanical mapping due to sudden cardiac-arrest. During FU, no arrhythmogenic, embolic or neurological events occurred in the treated pigs. Serial MRI confirmed the intramyocardial presence of the 3D-MTs by detection of the intracellular iron-oxide MPIOs during FU. Intramyocardial retention of 3D-MTs was confirmed by PCR analysis and was further verified on histology and immunohistochemical analysis. The 3D-MTs appeared to be viable, integrated and showed an intact micro architecture. We demonstrate the principal feasibility and safety of intramyocardial transplantation of in-vitro generated stem cell-based 3D-MTs. Multimodal cell-tracking strategies comprising advanced imaging and in-vitro tools allow for in-vivo monitoring and post-mortem analysis of transplanted 3D-MTs. The concept of 3D cellular self-assembly represents a promising application format as a next generation technology for cell-based myocardial regeneration.
    Biomaterials 01/2013; · 8.31 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To clear pathogens from host tissues or biomaterial surfaces, phagocytes have to break the adhesive bacteria-substrate interactions. Here we analysed the mechanobiological process that enables macrophages to lift-off and phagocytose surface-bound Escherichia coli (E. coli). In this opsonin-independent process, macrophage filopodia hold on to the E. coli fimbriae long enough to induce a local protrusion of a lamellipodium. Specific contacts between the macrophage and E. coli are formed via the glycoprotein CD48 on filopodia and the adhesin FimH on type 1 fimbriae (hook). We show that bacterial detachment from surfaces occurrs after a lamellipodium has protruded underneath the bacterium (shovel), thereby breaking the multiple bacterium-surface interactions. After lift-off, the bacterium is engulfed by a phagocytic cup. Force activated catch bonds enable the long-term survival of the filopodium-fimbrium interactions while soluble mannose inhibitors and CD48 antibodies suppress the contact formation and thereby inhibit subsequent E. coli phagocytosis.
    Scientific Reports 01/2013; 3:2884. · 5.08 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: According to the Chinese yin-yang concept, seemingly opposing forces give rise and respond to each other. Opposing forces, whether passive or active, are also at work when cells adhere to a substrate or extracellular matrix, sense environmental properties, and finally respond to them. In this review, we describe molecular elements inside and outside of the cell that establish labile physical connections, and how forces regulate their interplay, namely formation, reinforcement, breakage, and reconfiguration of these elements. What a cell locally feels thus depends not only on the displacement of materials, but also on the stability of molecular interactions, on the conversion of mechanical forces to biochemical signals by stretching proteins into structural intermediates (mechano-chemical signal conversion), and on the micro- and nanoscopic features of the extracellular material. Current methodologies for quantifying forces in the cellular context at different length scales are also critically assessed.
    Annual Review of Materials Research 01/2013; 43:589-618. · 13.07 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Inspired by molecular mechanisms that cells exploit to sense mechanical forces and convert them into biochemical signals, chemists dream of designing mechanochemical switches integrated into materials. Using the adhesion protein fibronectin, whose multiple repeats essentially display distinct molecular recognition motifs, we derived a computational model to explain how minimalistic designs of repeats translate into the mechanical characteristics of their fibrillar assemblies. The hierarchy of repeat-unfolding within fibrils is controlled not only by their relative mechanical stabilities, as found for single molecules, but also by the strength of cryptic interactions between adjacent molecules that become activated by stretching. The force-induced exposure of cryptic sites furthermore regulates the nonlinearity of stress-strain curves, the strain at which such fibers break, and the refolding kinetics and fraction of misfolded repeats. Gaining such computational insights at the mesoscale is important because translating protein-based concepts into novel polymer designs has proven difficult.
    Biophysical Journal 11/2012; 103(9):1909-18. · 3.67 Impact Factor

Publication Stats

6k Citations
947.11 Total Impact Points


  • 2012
    • University of Pennsylvania
      • Department of Bioengineering
      Philadelphia, PA, United States
    • University of Pittsburgh
      • Chemical and Petroleum Engineering
      Pittsburgh, PA, United States
  • 2006–2011
    • ETH Zurich
      • Department of Materials Science
      Zürich, Zurich, Switzerland
  • 2006–2010
    • Eawag: Das Wasserforschungs-Institut des ETH-Bereichs
      Duebendorf, Zurich, Switzerland
  • 1995–2010
    • University of Washington Seattle
      • • Department of Biological Structure
      • • Department of Bioengineering
      • • Department of Microbiology
      • • Department of Physics
      Seattle, WA, United States
  • 2009
    • Sandia National Laboratories
      • Electronic and Nanostructured Materials Department
      Albuquerque, New Mexico, United States
  • 2001
    • Trinity Washington University
      Washington, Washington, D.C., United States
  • 1996–2001
    • Oregon Health and Science University
      • • Department of Medicine
      • • Department of Biochemistry & Molecular Biology
      Portland, OR, United States
    • Boston University
      Boston, Massachusetts, United States
  • 1999
    • California Institute of Technology
      • Division of Chemistry and Chemical Engineering
      Pasadena, CA, United States