Are you Geoffrey Neale?

Claim your profile

Publications (4)37.91 Total impact

  • [show abstract] [hide abstract]
    ABSTRACT: Naive T cells respond to antigen stimulation by exiting from quiescence and initiating clonal expansion and functional differentiation, but the control mechanism is elusive. Here we describe that Raptor-mTORC1-dependent metabolic reprogramming is a central determinant of this transitional process. Loss of Raptor abrogated T cell priming and T helper 2 (Th2) cell differentiation, although Raptor function is less important for continuous proliferation of actively cycling cells. mTORC1 coordinated multiple metabolic programs in T cells including glycolysis, lipid synthesis, and oxidative phosphorylation to mediate antigen-triggered exit from quiescence. mTORC1 further linked glucose metabolism to the initiation of Th2 cell differentiation by orchestrating cytokine receptor expression and cytokine responsiveness. Activation of Raptor-mTORC1 integrated T cell receptor and CD28 costimulatory signals in antigen-stimulated T cells. Our studies identify a Raptor-mTORC1-dependent pathway linking signal-dependent metabolic reprogramming to quiescence exit, and this in turn coordinates lymphocyte activation and fate decisions in adaptive immunity.
    Immunity 12/2013; · 19.80 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Foxp3(+) regulatory T (Treg) cells are essential for the maintenance of self-tolerance and immune homeostasis. The majority of Treg cells is generated in the thymus as a specific subset of CD4(+) T cells, known as thymus-derived or natural Treg (nTreg) cells, in response to signals from T-cell receptors, costimulatory molecules, and cytokines. Recent studies have identified intracellular signaling and transcriptional pathways that link these signals to Foxp3 induction, but how the production of these extrinsic factors is controlled remains poorly understood. Here, we report that the transcription repressor growth factor independent 1 (Gfi1) has a key inhibitory role in the generation of nTreg cells by a noncell-autonomous mechanism. T cell-specific deletion of Gfi1 results in aberrant expansion of thymic nTreg cells and increased production of cytokines. In particular, IL-2 overproduction plays an important role in driving the expansion of nTreg cells. In contrast, although Gfi1 deficiency elevated thymocyte apoptosis, Gfi1 repressed nTreg generation independently of its prosurvival effect. Consistent with an inhibitory role of Gfi1 in this process, loss of Gfi1 dampens antitumor immunity. These data point to a previously unrecognized extrinsic control mechanism that negatively shapes thymic generation of nTreg cells.
    Proceedings of the National Academy of Sciences 08/2013; · 9.74 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: The MN1 oncogene is deregulated in human acute myeloid leukemia and its overexpression induces proliferation and represses myeloid differentiation of primitive human and mouse hematopoietic cells, leading to myeloid leukemia in mouse models. To delineate the sequences within MN1 necessary for MN1-induced leukemia, we tested the transforming capacity of in-frame deletion mutants, using retroviral transduction of mouse bone marrow. We found that integrity of the regions between amino acids 12 to 458 and 1119 to 1273 are required for MN1's in vivo transforming activity, generating myeloid leukemia with some mutants also producing T-cell lympho-leukemia and megakaryocytic leukemia. Although both full length MN1 and a mutant that lacks the residues between 12-228 (Δ12-228 mutant) repressed myeloid differentiation and increased myeloproliferative activity in vitro, the mutant lost its transforming activity in vivo. Both MN1 and Δ12-228 increased the frequency of common myeloid progentiors (CMP) in vitro and microarray comparisons of purified MN1-CMP and Δ12-228-CMP cells showed many differentially expressed genes including Hoxa9, Meis1, Myb, Runx2, Cebpa, Cebpb and Cebpd. This collection of immediate MN1-responsive candidate genes distinguishes the leukemic activity from the in vitro myeloproliferative capacity of this oncoprotein.
    PLoS ONE 01/2013; 8(4):e61706. · 3.73 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: The bile salt export pump (BSEP) is an ATP-binding cassette transporter that serves as the primary system for removing bile salts from the liver. In humans, deficiency of BSEP, which is encoded by the ABCB11 gene, causes severe progressive cholestatic liver disease from early infancy. In previous studies of Abcb11 deficiency in mice generated on a mixed genetic background, the animals did not recapitulate the human disease. We reasoned that ABCB11 deficiency may cause unique changes in hepatic metabolism that are predictive of liver injury. To test this possibility, we first determined that Abcb11 knock-out (KO) C57BL/6J mice recapitulate human deficiency. Before the onset of cholestasis, Abcb11 KO mice have altered hepatic lipid metabolism coupled with reduced expression of genes important in mitochondrial fatty acid oxidation. This was associated with increased serum free-fatty acids, reduced total white adipose, and marked impairment of long-chain fatty acid β-oxidation. Importantly, metabolomic analysis confirmed that Abcb11 KO mice have impaired mitochondrial fatty acid β-oxidation with the elevated fatty acid metabolites phenylpropionylglycine and phenylacetylglycine. These metabolic changes precede cholestasis but may be of relevance to cholestatic disease progression because altered fatty acid metabolism can enhance reactive oxygen species that might exacerbate cholestatic liver damage.
    Journal of Biological Chemistry 05/2012; 287(29):24784-94. · 4.65 Impact Factor