Ana B Muñoz-Manchado

Universidad de Sevilla, Hispalis, Andalusia, Spain

Are you Ana B Muñoz-Manchado?

Claim your profile

Publications (3)14.19 Total impact

  • Source
    [show abstract] [hide abstract]
    ABSTRACT: The carotid body (CB) is the major peripheral arterial chemoreceptor in mammals that mediates the acute hyperventilatory response to hypoxia. The CB grows in response to sustained hypoxia and also participates in acclimatisation to chronic hypoxemia. Knowledge of CB physiology at the cellular level has increased considerably in recent times thanks to studies performed on lower mammals, and rodents in particular. However, the functional characteristics of human CB cells remain practically unknown. Herein, we use tissue slices or enzymatically dispersed cells to determine characteristics of human CB cells. The adult human CB parenchyma contains clusters of chemosensitive glomus (type I) and sustentacular (type II) cells as well as nestin-positive progenitor cells. This organ also expresses high levels of the dopaminotrophic glial cell line-derived neurotrophic factor (GDNF). We found that GDNF production and the number of progenitor and glomus cells were preserved in the CBs of human subjects of advanced age. Moreover, glomus cells exhibited voltage-dependent Na+, Ca2+ and K+ currents that were qualitatively similar to those reported in lower mammals. These cells responded to hypoxia with an external Ca2+-dependent increase of cytosolic Ca2+ and quantal catecholamine secretion, as reported for other mammalian species. Interestingly, human glomus cells are also responsive to hypoglycaemia and together these two stimuli can potentiate each other's effects. The chemosensory responses of glomus cells are also preserved at an advance age. These new data on the cellular and molecular physiology of the CB pave the way for future pathophysiological studies involving this organ in humans.
    The Journal of Physiology 10/2013; · 4.38 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Intrastriatal transplantation of dopaminergic carotid body (CB) cells ameliorates parkinsonism in animal models and, with less efficacy, in Parkinson's disease patients. CB-based cell therapy was initially proposed because of its high dopamine content. However, later studies suggested that its beneficial effect might be due to a trophic action exerted on nigrostriatal neurons. Compatible with this concept are the high levels of neurotrophic factors encountered in CB cells. To test experimentally this idea, unilateral striatal transplants were performed with a sham graft in the contralateral striatum, as a robust internal control. Thereafter, the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6, -tetrahydropyridine was injected during 3 months. CB grafts protected from degeneration ipsilateral nigral dopaminergic neurons projecting to the transplant in a dose-dependent manner regarding size and glial cell line-derived neurotrophic factor expression. Grafts performed at different times after the onset of the neurotoxic treatment demonstrated with histological and behavioral methods protection and repair of the nigrostriatal pathway by CB transplants. This study provides a mechanistic explanation for the action of CB transplants on parkinsonian models. It should also help to improve cell therapy approaches to Parkinson's disease.
    Neurobiology of aging 06/2012; · 5.94 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: A major limiting factor for cell therapy in Parkinson's disease is that the survival of grafted dopaminergic neurons is very poor, which may be improved by administration of GDNF, for which the carotid body is a good source. Rats with total unilateral dopaminergic denervation were grafted with a cell suspension of rat dopaminergic neuroblasts with or without cell aggregates from the rat carotid body. At 1, 2 and 3 months after grafting, the rats were tested in the cylinder and the rotometer and killed 4 months after grafting. We observed that the survival of dopaminergic neurons and graft-derived dopaminergic innervation were higher in rats that received mixed grafts. Both grafted groups showed complete recovery in the amphetamine-induced rotation test. However, rats with cografts performed significantly better in the cylinder test. Cografting of carotid body cells may constitute a useful strategy for cell therapy in Parkinson's disease.
    Regenerative Medicine 05/2012; 7(3):309-22. · 3.87 Impact Factor