Felix Bauer

University of Bayreuth , Bayreuth, Bavaria, Germany

Are you Felix Bauer?

Claim your profile

Publications (4)16.71 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Silk fibers are well known for their mechanical properties such as strength and toughness and are lightweight, making them an interesting material for a variety of applications. Silk mechanics mainly rely on the secondary structure of the underlying proteins. Lacewing egg stalk silk proteins obtain a cross-β structure with individual β strands aligned perpendicular to the fiber axis. This structure is in contrast with that of silks of spiders or silkworms with β strands parallel to the fiber axis and to that of silks of honeybees with α helices arranged in coiled coils. On the basis of the cross-β structure the mechanical properties of egg stalks are different from those of other silks concerning extensibility, toughness, and bending stiffness. Here we show the influence of relative humidity on the mechanical behavior of lacewing egg stalks and propose a model based on secondary structure changes to explain the differences on a molecular level. At low relative humidity, the stalks rupture at an extension of 3%, whereas at high relative humidity the stalks rupture at 434%. This dramatic increase corresponds to breakage of hydrogen bonds between the β strands and a rearrangement thereof in a parallel-β structure.
    Biomacromolecules 10/2012; · 5.37 Impact Factor
  • Felix Bauer, Thomas Scheibel
    [Show abstract] [Hide abstract]
    ABSTRACT: Ei am Stiel: Florfliegen schützen ihre Eier vor Fraßfeinden auf kleinen Stielen (siehe Bild). Die Stiele haben gute mechanische Eigenschaften und anders als die meisten Seiden eine Cross‐β‐Struktur. Aus einem artifiziellen und rekombinant hergestellten Protein nach dem Vorbild eines sequenzierten Florfliegen‐Eierstielproteins konnte ein künstlicher Stiel produziert werden, der 90 % der Zugfestigkeit eines natürlichen Stiels aufweist.
    Angewandte Chemie 06/2012; 124(26).
  • Felix Bauer, Thomas Scheibel
    [Show abstract] [Hide abstract]
    ABSTRACT: Rigid threads: Lacewings protect their eggs from predators by laying them on small stalks (see picture). The stalks have good mechanical properties and, unlike most other silks, a cross β structure. An artificial egg stalk was produced using a designed recombinant variant of a sequenced lacewing egg stalk protein, and it attained 90 % of the tensile strength of a natural egg stalk.
    Angewandte Chemie International Edition 05/2012; 51(26):6521-4. · 11.34 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: 1 Einführung Proteine sind Polypeptide (bestehend aus 20 natürlich vorkommenden Aminosäuren) die einerseits als essentielle Bestandteile des Körpers in vielen physiologischen und biologischen Prozessen involviert sind, aber andererseits auch als Grundbausteine in Funktionsmaterialien Verwendung finden. [1] Diese in der Natur in zahlreichen Konstrukten vorkommenden faserigen Proteinfunktionsmaterialien, sind in den letzten Jahren verstärkt in den Fokus der Wissenschaft und der Forschung gerückt. Vornehmlich wegen ihrer herausragenden Eigenschaften, die sie im Laufe der Evolution hinsichtlich ihrer Funktion weiter entwickelten und verbesserten. Abbildung 1 zeigt einige ausgewählte Vertreter dieser Proteinfasern, die auf Grund der Kombination mechanischer Eigenschaften wie z.B. Festigkeit und Dehnbarkeit, vielen Vertretern der synthetischen Polymere überlegen sind. [1, 2] Bild 1: Übersicht über einige ausgewählte Vertreter der Proteinfasern Ein prominentes Beispiel für ein solches Funktionskonstrukt in der Natur ist das Spinnennetz, das aus Spinnenseide, einem faszinierendem Vertreter der faserigen Proteinmaterialien, hergestellt wird. Spinnennetze gibt es in verschiedenen Bauformen und Größen, die am weitesten verbreitete Form ist die des sogenannten Radnetzes, und sie dienen der Spinne in allererster Linie als Beutefangwerkzeug. Hauptbestandteil des Radnetzes sind zwei Seidenfäden: der Abseilfaden und die Fangspirale. Insbesondere der stabilere Abseilfaden, der der Spinne als Abseilfaden in Gefahrensituationen dient, sowie den Rahmen und die Speichen eines Radnetzes bildet, wird intensiv untersucht. Das liegt vor allem daran, dass der Abseilfaden sich durch eine einzigartige Kombination von Stabilität und Dehnbarkeit auszeichnet, die ihn gegenüber anderen natürlichen und synthetischen Fasern überlegen macht (Tabelle 1). Der zweite Faden, die Fangspirale, ist deutlich dehnbarer, was ihn hervorragend für die Dissipation größerer Mengen Energie (wie im Falle des Eintreffens der Beute) eignet. Tabelle 1. Mechanische Eigenschaften natürlicher und synthetischer Fasermaterialien
    Verbundwerkstoffe: 17. Symposium Verbundwerkstoffe und Werkstoffverbunde, Germany; 05/2009