John C Gore

Vanderbilt University, Nashville, Michigan, United States

Are you John C Gore?

Claim your profile

Publications (649)2442.75 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: PurposeTo monitor the spontaneous recovery of cervical spinal cord injury (SCI) using longitudinal multiparametric MRI methods.Methods Quantitative MRI imaging including diffusion tensor imaging, magnetization transfer (MT), and chemical exchange saturation transfer (CEST) were conducted in anesthetized squirrel monkeys at 9.4T. The structural, cellular, and molecular features of the spinal cord were examined before and at different time points after a dorsal column lesion in each monkey.ResultsImages with MT contrast enhanced visualization of the gray and white matter boundaries and the lesion and permitted differentiation of core and rim compartments within an abnormal volume (AV). In the early weeks after SCI, both core and rim exhibited low cellular density and low protein content, with high levels of exchanging hydroxyl, amine, and amide protons, as evidenced by increased apparent diffusion coefficient, decreased fractional anisotropy, decreased MT ratio, decreased nuclear Overhauser effect, and large CEST effects. Over time, cellular density and fiber density increased, whereas amide, amine, and hydroxyl levels dropped significantly, but at differing rates. Histology confirmed the nature of the AV to be a cyst.Conclusion Multiparametric MRI offers a novel method to quantify the spontaneous changes in structure and cellular and molecular compositions of SC during spontaneous recovery from injury. Magn Reson Med, 2014. © 2014 Wiley Periodicals, Inc.
    Magnetic Resonance in Medicine 10/2014; · 3.27 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The objectives of this study were (1) to develop a novel magnetization transfer ratio (MTR) MRI assay of the proximal sciatic nerve (SN), which is inaccessible via current tools for assessing peripheral nerves, and (2) to evaluate the resulting MTR values as a potential biomarker of myelin content changes in patients with Charcot-Marie-Tooth (CMT) diseases.
    Neurology 09/2014; · 8.25 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Curcumin is a promising compound that can be used as a theranostic agent to aid research in Alzheimer's disease. Beyond its ability to bind to amyloid plaques, the compound can also cross the blood-brain barrier. Presently, curcumin can be applied only to animal models, as the formulation needed for iv injection renders it unfit for human use. Here, we describe a novel technique to aerosolize a curcumin derivative, FMeC1, and facilitate its safe delivery to the brain. Aside from the translational applicability of this approach, a study in the 5XFAD mouse model suggested that inhalation exposure to an aerosolized FMeC1 modestly improved the distribution of the compound in the brain. Additionally, immunohistochemistry data confirms that following aerosol delivery, FMeC1 binds amyloid plaques expressed in the hippocampal areas and cortex.
    Journal of Alzheimer's disease: JAD 09/2014; · 4.17 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mapping mean axon diameter and intra-axonal volume fraction may have significant clinical potential because nerve conduction velocity is directly dependent on axon diameter, and several neurodegenerative diseases affect axons of specific sizes and alter axon counts. Diffusion-weighted MRI methods based on the pulsed gradient spin echo (PGSE) sequence have been reported to be able to assess axon diameter and volume fraction non-invasively. However, due to the relatively long diffusion times used, e.g. > 20ms, the sensitivity to small axons (diameter<2μm) is low, and the derived mean axon diameter has been reported to be overestimated. In the current study, oscillating gradient spin echo (OGSE) diffusion sequences with variable frequency gradients were used to assess rat spinal white matter tracts with relatively short effective diffusion times (1 - 5ms). In contrast to previous PGSE-based methods, the extra-axonal diffusion cannot be modeled as hindered (Gaussian) diffusion when short diffusion times are used. Appropriate frequency-dependent rates are therefore incorporated into our analysis and validated by histology-based computer simulation of water diffusion. OGSE data were analyzed to derive mean axon diameters and intra-axonal volume fractions of rat spinal white matter tracts (mean axon diameter~1.27 - 5.54μm). The estimated values were in good agreement with histology, including the small axon diameters (<2.5μm). This study establishes a framework for quantification of nerve morphology using the OGSE method with high sensitivity to small axons.
    NeuroImage 09/2014; · 6.25 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The fusiform face area (FFA) is one of several areas in occipito-temporal cortex whose activity is correlated with perceptual expertise for objects. Here, we investigate the robustness of expertise effects in FFA and other areas to a strong task manipulation that increases both perceptual and attentional demands. With high-resolution fMRI at 7Telsa, we measured responses to images of cars, faces and a category globally visually similar to cars (sofas) in 26 subjects who varied in expertise with cars, in (a) a low load 1-back task with a single object category and (b) a high load task in which objects from two categories rapidly alternated and attention was required to both categories. The low load condition revealed several areas more active as a function of expertise, including both posterior and anterior portions of FFA bilaterally (FFA1/FFA2 respectively). Under high load, fewer areas were positively correlated with expertise and several areas were even negatively correlated, but the expertise effect in face-selective voxels in the anterior portion of FFA (FFA2) remained robust. Finally, we found that behavioral car expertise also predicted increased responses to sofa images but no behavioral advantages in sofa discrimination, suggesting that global shape similarity to a category of expertise is enough to elicit a response in FFA and other areas sensitive to experience, even when the category itself is not of special interest. The robustness of expertise effects in right FFA2 and the expertise effects driven by visual similarity both argue against attention being the sole determinant of expertise effects in extrastriate areas.
    Neuropsychologia 09/2014; · 3.48 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: PurposeA diffusion-weighted multishot echo-planar imaging approach combined with SENSE and a two-dimensional (2D) navigated motion correction was investigated as an alternative to conventional single-shot counterpart to obtain optic nerve images at higher spatial resolution with reduced artifacts.Methods Fifteen healthy subjects were enrolled in the study. Six of these subjects underwent a repeated acquisition at least 2 weeks after the initial scan session to address reproducibility. Both single-shot and multishot diffusion tensor imaging studies of the human optic nerve were performed with matched scan time. Effect of subject motions were corrected using 2D phase navigator during multishot image reconstruction. Tensor-derived indices from proposed multishot were compared against conventional single-shot approach. Image resolution difference, right–left optic nerve asymmetry, and test–retest reproducibility were also assessed.ResultsIn vivo results of acquired multishot images and quantitative maps of diffusion properties of the optic nerve showed significantly reduced image artifacts (e.g., distortions and blurring), and the derived diffusion indices were comparable to those from other studies. Single-shot scans presented larger variability between right and left optic nerves than multishot scans. Multishot scans also presented smaller variations across scans at different time points when compared with single-shot counterparts.Conclusion The multishot technique has considerable potential for providing improved information on optic nerve pathology and may also be translated to higher fields. Magn Reson Med, 2014. © 2014 Wiley Periodicals, Inc.
    Magnetic Resonance in Medicine 09/2014; · 3.27 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The purpose of this study is to evaluate the utility of high-resolution non-invasive endogenous high-field MRI methods for the longitudinal structural and quantitative assessments of mouse kidney disease using the model of unilateral ureter obstruction (UUO). T1-weighted, T2-weighted and magnetization transfer (MT) imaging protocols were optimized to improve the regional contrast in mouse kidney. Conventional T1 and T2 weighted images were collected in UUO mice on day 0 (~3 hrs), day 1, day 3 and day 6 after injury, on a 7T small animal MRI system. Cortical and medullary thickness, corticomedullary contrast and Magnetization Transfer Ratio (MTR) were assessed longitudinally. Masson trichrome staining was used to histologically assess changes in tissue microstructure. Over the course of UUO progression there were significant (p<0.05) changes in thickness of cortex and outer medulla, regional changes in T2 signal intensity and MTR values. Histological changes included tubular cell death, tubular dilation, urine retention, and interstitial fibrosis, assessed by histology. The MRI measures of renal cortical and medullary atrophy, cortical-medullary differentiation and MTR changes provide an endogenous, non-invasive and quantitative evaluation of renal morphology and tissue composition during UUO progression.
    Magnetic resonance imaging. 08/2014;
  • Ping Wang, Jake Block, John C Gore
    [Show abstract] [Hide abstract]
    ABSTRACT: To quantify the characteristics of proton chemical exchange in knee cartilage in vivo by R1ρ dispersion analysis.
    Magnetic resonance imaging. 08/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Thomsen-Friedenreich (TF) antigen belongs to the mucin-type tumor-associated carbohydrate antigen. Notably, TF antigen is overexpressed in colorectal cancer (CRC) but is rarely expressed in normal colonic tissue. Increased TF antigen expression is associated with tumor invasion and metastasis. In this work, we sought to validate a novel nanobeacon for imaging TF-associated CRC in a preclinical animal model. We developed and characterized the nanobeacon for use with fluorescence colonoscopy. In vivo imaging was performed on an orthotopic rat model of colorectal cancer. Both white light and fluorescence colonoscopy methods were utilized to establish the ratio-imaging index for the probe. The nanobeacon exhibited specificity for TF-associated cancer. Fluorescence colonoscopy using the probe can detect lesions at the stage which is not readily confirmed by conventional visualization methods. Further, the probe can report the dynamic change of TF expression as tumor regresses during chemotherapy.Data from this work suggests that fluorescence colonoscopy can improve early CRC detection. Supplemented by the established ratio-imaging index, the probe can be used not only for early detection, but also for reporting tumor response during chemotherapy. Furthermore, since the data obtained through in vivo imaging confirmed that the probe was not absorbed by the colonic mucosa, no registered toxicity is associated with this nanobeacon. Taken together, these data demonstrate the potential of this novel probe for imaging TF antigen as a biomarker for the early detection and prediction of the progression of CRC at the molecular level. © 2014 Wiley Periodicals, Inc.
    International Journal of Cancer 07/2014; · 6.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We have been investigating an imaging agent that enables real-time and accurate diagnosis of early colorectal cancer at the intestinal mucosa by colonoscopy. The imaging agent is peanut agglutinin-immobilized polystyrene nanospheres with surface poly(N-vinylacetamide) chains encapsulating coumarin 6. Intracolonically-administered lectin-immobilized fluorescent nanospheres detect tumor-derived changes through molecular recognition of lectin for the terminal sugar of cancer-specific antigens on the mucosal surface. The focus of the present study was to evaluate imaging abilities of the nanospheres in animal models that reflect clinical environments. We previously developed an orthotopic mouse model with human colorectal tumors growing on the mucosa of the descending colon to better resemble the clinical disease. The entire colon of the mice in the exposed abdomen was monitored in real time with an in vivo imaging apparatus. Fluorescence from the nanospheres was observed along the entire descending colon after intracolonical administration from the anus. When the luminal side of the colon was washed with phosphate-buffered saline, most of the nanospheres were flushed. However, fluorescence persisted in areas where cancer cells were implanted. Histological evaluation demonstrated that tumors were present in the mucosal epithelia where the nanospheres fluoresced. In contrast, no fluorescence was observed when control mice, without tumors were tested. The lectin-immobilized fluorescent nanospheres were tumor-specific and remained bound to tumors even after vigorous washing. The nanospheres nonspecifically bound to normal mucosa were easily removed through mild washing. These results indicate that the nanospheres combined with colonoscopy, will be a clinically-valuable diagnostic tool for early-stage primary colon carcinoma. Copyright © 2014 John Wiley & Sons, Ltd.
    Contrast Media & Molecular Imaging 06/2014; · 2.87 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The regional uptake of glucose in rat brain in vivo was measured at high resolution using spin-lock magnetic resonance imaging after infusion of the glucose analogue 2-deoxy-D-glucose (2DG). Previous studies of glucose metabolism have used (13)C-labeled 2DG and NMR spectroscopy, (18)F-labeled fluorodeoxyglucose (FDG) and PET, or chemical exchange saturation transfer (CEST) MRI, all of which have practical limitations. Our goal was to explore the ability of spin-lock sequences to detect specific chemically-exchanging species in vivo and to compare the effects of 2DG in brain tissue on CEST images.
    Magnetic resonance imaging. 06/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Diffusion measurements derived from breast MRI can be adversely affected by unwanted signals from abundant fatty tissues if they are not suppressed adequately. To minimize this undesired contribution, we designed and optimized a water-selective diffusion-weighted imaging (DWI) sequence, which relies on spectrally selective excitation on the water resonance, obviating the need for fat suppression. As this method is more complex than standard DWI methods, we also report a test–retest study to evaluate its reproducibility. In this study, a spectrally selective Gaussian pulse on water resonance was combined with a pair of slice-selective adiabatic refocusing pulses for water-only DWI. Field map-based shimming and manual determination of the center frequency were used for water selection. The selectivity of the excitation pulse was optimized by a spectrally selective spectroscopy sequence based on the same principles. A test–retest study of 10 volunteers in two separate visits was used to evaluate its reproducibility. Our results from all subjects showed high-quality diffusion-weighted images of the breast without fat contamination. Mean apparent diffusion coefficients for b = 0, 600 s/mm2 and b = 50, 600 s/mm2 all showed good reproducibility, as 95% confidence intervals of the apparent diffusion coefficients were 4 × 10–5 mm2/s and 5 × 10–5 mm2/s and repeatability values were 1.09 × 10–4 and 1.31 × 10–4, respectively. In conclusion, water-selective DWI is a feasible alternative to standard methods of DWI based on fat suppression. The added complexity of the method does not compromise the reproducibility of diffusion measurements in the breast. Copyright © 2014 John Wiley & Sons, Ltd.
    NMR in Biomedicine 06/2014; · 3.45 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Current radiologic methods for diagnosing breast cancer detect specific morphologic features of solid tumors or any associated calcium deposits. These deposits originate from an early molecular microcalcification process of 2 types: type 1 is calcium oxylate and type II is carbonated calcium hydroxyapatite. Type I microcalcifications are associated mainly with benign tumors, whereas type II microcalcifications are produced internally by malignant cells. No current noninvasive in vivo techniques are available for detecting intratumoral microcalcifications. Such a technique would have a significant impact on breast cancer diagnosis and prognosis in preclinical and clinical settings. (18)F-NaF PET has been used solely for bone imaging by targeting the bone hydroxyapatite. In this work, we provide preliminary evidence that (18)F-NaF PET imaging can be used to detect breast cancer by targeting the hydroxyapatite lattice within the tumor microenvironment with high specificity and soft-tissue contrast-to-background ratio while delineating tumors from inflammation. Mice were injected with approximately 10(6) MDA-MB-231 cells subcutaneously and imaged with (18)F-NaF PET/CT in a 120-min dynamic sequence when the tumors reached a size of 200-400 mm(3). Regions of interest were drawn around the tumor, muscle, and bone. The concentrations of radiotracer within those regions of interest were compared with one another. For comparison to inflammation, rats with inflamed paws were subjected to (18)F-NaF PET imaging. Tumor uptake of (18)F(-) was significantly higher (P < 0.05) than muscle uptake, with the tumor-to-muscle ratio being about 3.5. The presence of type II microcalcification in the MDA-MB-231 cell line was confirmed histologically using alizarin red S and von Kossa staining as well as Raman microspectroscopy. No uptake of (18)F(-) was observed in the inflamed tissue of the rats. Lack of hydroxyapatite in the inflamed tissue was verified histologically. This study provides preliminary evidence suggesting that specific targeting with (18)F(-) of hydroxyapatite within the tumor microenvironment may be able to distinguish between inflammation and cancer.
    Journal of Nuclear Medicine 05/2014; · 5.77 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This paper proposes a new energy minimization method called multiplicative intrinsic component optimization (MICO) for joint bias field estimation and segmentation of magnetic resonance (MR) images. The proposed method takes full advantage of the decomposition of MR images into two multiplicative components, namely, the true image that characterizes a physical property of the tissues and the bias field that accounts for the intensity inhomogeneity, and their respective spatial properties. Bias field estimation and tissue segmentation are simultaneously achieved by an energy minimization process aimed to optimize the estimates of the two multiplicative components of an MR image. The bias field is iteratively optimized by using efficient matrix computations, which are verified to be numerically stable by matrix analysis. More importantly, the energy in our formulation is convex in each of its variables, which leads to the robustness of the proposed energy minimization algorithm. The MICO formulation can be naturally extended to 3D/4D tissue segmentation with spatial/sptatiotemporal regularization. Quantitative evaluations and comparisons with some popular softwares have demonstrated superior performance of MICO in terms of robustness and accuracy.
    Magnetic resonance imaging. 04/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Multifunctional nanoparticles are synthesized for both pH-triggered drug release and imaging with radioluminescence, upconversion luminescent, and magnetic resonance imaging (MRI). The particles have a yolk-in-shell morphology, with a radioluminescent core, an upconverting shell, and a hollow region between the core and shell for loading drugs. They are synthesized by controlled encapsulation of a radioluminescent nanophosphor yolk in a silica shell, partial etching of the yolk in acid, and encapsulation of the silica with an upconverting luminescent shell. Metroxantrone, a chemotherapy drug, was loaded into the hollow space between X-ray phosphor yolk and up-conversion phosphor shell through pores in the shell. To encapsulate the drug and control the release rate, the nanoparticles are coated with pH-responsive biocompatible polyelectrolyte layers of charged hyaluronic acid sodium salt and chitosan. The nanophosphors display bright luminescence under X-ray, blue light (480 nm), and near infrared light (980 nm). They also served as T1 and T2 MRI contrast agents with relaxivities of 3.5 mM−1 s−1 (r1) and 64 mM−1s−1 (r2). These multifunctional nanocapsules have applications in controlled drug delivery and multimodal imaging.
    Small 04/2014; · 7.82 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Inter-areal and ipsilateral cortical responses to tactile stimulation have not been well described in human S1 cortex. By taking advantage of the high signal-to-noise ratio at 7 T, we quantified blood oxygenation level dependent (BOLD) response patterns and time courses to tactile stimuli on individual distal finger pads at a fine spatial scale, and examined whether there are inter-areal (area 3b versus area 1) and interhemispheric response differences to unilateral tactile stimulation in healthy human subjects. We found that 2-Hz tactile stimulation of individual fingertips evoked detectable BOLD signal changes in both contralateral and ipsilateral area 3b and area 1. Contralateral digit activations were organized in an orderly somatotopic manner, and BOLD responses in area 3b were more digit selective than those in area 1. However, the area of cortex that was responsive to stimulation of a single digit (stimulus-response field) was similar across areas. In the ipsilateral hemisphere, response magnitudes in both areas 3b and 1 were significantly weaker than those of the contralateral hemisphere. Digit activations exhibited no clear somatotopic organizational pattern in either area 3b or area 1, yet digit selectivity was retained in area 1 but not in area 3b. The observation of distinct digit-selective responses of contralateral area 3b versus area 1 supports a higher order function of contralateral area 1 in spatial integration. In contrast, ipsilateral cortices may play a less discriminative role in the perception of unilateral tactile sensation in humans. Hum Brain Mapp, 2014. © 2014 Wiley Periodicals, Inc.
    Human Brain Mapping 04/2014; · 6.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Magnetic nanocapsules were synthesized for controlled drug release, magnetically assisted delivery, and MRI imaging. These magnetic nanocapsules, consisting of a stable iron nanocore and a mesoporous silica shell, were synthesized by controlled encapsulation of ellipsoidal hematite in silica, partial etching of the hematite core in acid, and reduction of the core by hydrogen. The iron core provided a high saturation magnetization and was stable against oxidation for at least 6 months in air and 1 month in aqueous solution. The hollow space between the iron core and mesoporous silica shell was used to load anticancer drug and a T1-weighted MRI contrast agent (Gd-DTPA). These multifunctional monodispersed magnetic "nanoeyes" were coated by multiple polyelectrolyte layers of biocompatible poly-l-lysine and sodium alginate to control the drug release as a function of pH. We studied pH-controlled release, magnetic hysteresis curves, and T1/T2 MRI contrast of the magnetic nanoeyes. They also served as MRI contrast agents with relaxivities of 8.6 mM(-1) s(-1) (r 1) and 285 mM(-1) s(-1) (r 2).
    Chemistry of Materials 03/2014; 26(6):2105-2112. · 8.24 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: While spontaneous BOLD fMRI signal is a common tool to map functional connectivity, unexplained inter- and intra-subject variability frequently complicates interpretation. Similar to evoked BOLD fMRI responses, spontaneous BOLD signal is expected to vary with echo time (TE) and corresponding intra/extravascular sensitivity. This may contribute to discrepant conclusions even following identical post-processing pipelines. Here we applied commonly-utilized independent component analysis (ICA) as well as seed-based correlation analysis and investigated default mode network (DMN) and visual network (VN) detection from BOLD data acquired at three TEs (3T; TR=2500ms; TE=15ms, 35ms, and 55ms) and from quantitative R2* maps. Explained variance in ICA analysis was significantly higher (P<0.05) when R2*-derived maps were considered relative to single-TE data with no post-processing. While explained variance in the BOLD data increased with motion correction, R2* derived DMN and VN were minimally affected by motion correction. Explained variance increased in all data when physiological noise confounds were removed using CompCor. Notably, the R2*-derived connectivity patterns were least affected by motion and physiological noise confounds in a seed-based correlation analysis. Intermediate (35ms) and long (55ms) TE data provided similar spatial and temporal characteristics only after reducing motion and physiological noise contamination. Results provide an exemplar for how 3T spontaneous BOLD network detection varies with TE and post-processing procedure over the range of commonly acquired TE values.
    NeuroImage 03/2014; · 6.25 Impact Factor
  • Hua Li, John C Gore, Junzhong Xu
    [Show abstract] [Hide abstract]
    ABSTRACT: Mapping axon sizes non-invasively is of interest for neuroscientists and may have significant clinical potential because nerve conduction velocity is directly dependent on axon size. Current approaches to measuring axon sizes using diffusion-weighted MRI, e.g. q-space imaging with pulsed gradient spin echo (PGSE) sequences usually require long scan times and high q-values to detect small axons (diameter <2μm). The oscillating gradient spin echo (OGSE) method has been shown to be able to achieve very short diffusion times and hence may be able to detect smaller axons with high sensitivity. In the current study, OGSE experiments were performed to measure the inner diameters of hollow microcapillaries with a range of sizes (∼1.5-19.3μm) that mimic axons in the human central nervous system. The results suggest that OGSE measurements, even with only moderately high frequencies, are highly sensitive to compartment sizes, and a minimum of two ADC values with different frequencies may be sufficient to extract the microcapillary size accurately. This suggests that the OGSE method may serve as a fast and robust measurement method for mapping axon sizes non-invasively.
    Journal of Magnetic Resonance 02/2014; 242C:4-9. · 2.30 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The human hippocampal formation is characterized by anterior-posterior gradients of cell density, neurochemistry and hemodynamics. In addition, some functions are associated with specific subfields (subiculum, CA1-4, dentate gyrus) and regions (anterior and posterior). We performed contrast-enhanced, high-resolution T1-weighted 3T steady state (SS) imaging to investigate cerebral blood volume (CBV) gradients of the hippocampal formation. We studied 14 healthy subjects and found significant CBV gradients (anterior > posterior) in the subiculum but not in other hippocampal subfields. Since CBV is a marker of basal metabolism these results indicate a greater baseline activity in the anterior compared to the posterior subiculum. This gradient might be related to the role of the subiculum as the main outflow station of the hippocampal formation and might have implications for the mechanisms of neuropsychiatric disorders. © 2014 Wiley Periodicals, Inc.
    Hippocampus 02/2014; · 5.49 Impact Factor

Publication Stats

27k Citations
2,442.75 Total Impact Points


  • 2000–2014
    • Vanderbilt University
      • • Vanderbilt University Institute of Imaging Science (VUIIS)
      • • Department of Radiology and Radiological Sciences
      • • Department of Psychology
      Nashville, Michigan, United States
  • 2013
    • University Medical Center Utrecht
      • Department of Radiology
      Utrecht, Provincie Utrecht, Netherlands
    • SAS Institute
      North Carolina, United States
    • Clemson University
      • Department of Chemistry
      Anderson, IN, United States
  • 2009–2013
    • Northwestern University
      • • Department of Radiology
      • • Department of Psychology
      Evanston, Illinois, United States
    • The Chinese University of Hong Kong
      • Department of Psychology
      Hong Kong, Hong Kong
    • Memorial Sloan-Kettering Cancer Center
      New York City, New York, United States
    • Vietnam National University, Hanoi
      Hà Nội, Ha Nội, Vietnam
  • 2012
    • Sichuan University
      • College of Electronics and Information Engineering
      Chengdu, Sichuan Sheng, China
  • 2011
    • Setsunan University
      • Faculty of Pharmaceutical Sciences
      Ōsaka-shi, Osaka-fu, Japan
  • 2008–2010
    • King's College
      • Department of Biology
      Wilkes-Barre, Pennsylvania, United States
    • Shaare Zedek Medical Center
      • Neurology and Toxicology Service and Unit
      Yerushalayim, Jerusalem District, Israel
  • 1986–2010
    • Yale University
      • • Department of Diagnostic Radiology and Pediatric Diagnostic Radiology
      • • Department of Biomedical Engineering
      • • Department of Electrical Engineering
      • • School of Engineering and Applied Science
      • • Department of Pediatrics
      • • Department of Therapeutic Radiology
      New Haven, CT, United States
  • 2005
    • State University of New York
      New York City, New York, United States
  • 1984–2005
    • Yale-New Haven Hospital
      • Department of Laboratory Medicine
      New Haven, Connecticut, United States
  • 2002–2003
    • Columbia University
      • • College of Physicians and Surgeons
      • • Department of Psychiatry
      New York City, NY, United States
    • Korea University
      • Department of Physics
      Seoul, Seoul, South Korea
  • 1991–2002
    • Albert Einstein College of Medicine
      • Department of Medicine
      New York City, NY, United States
  • 1999
    • Haskins Laboratories
      New Haven, Connecticut, United States
  • 1998
    • University of Rochester
      • School of Medicine and Dentistry
      Rochester, NY, United States
  • 1997
    • University of Kentucky
      • Department of Radiation Medicine
      Lexington, KY, United States
    • McGill University
      • Department of Physics
      Montréal, Quebec, Canada
  • 1995
    • University of Texas Health Science Center at San Antonio
      San Antonio, Texas, United States
  • 1994
    • Massachusetts Institute of Technology
      Cambridge, Massachusetts, United States