Are you Felix E. Okieimen?

Claim your profile

Publications (3)0.42 Total impact

  • Raymond A. Wuana, Felix E. Okieimen, Blessing Ogoh
    [Show abstract] [Hide abstract]
    ABSTRACT: Chemical fractionation patterns and plant tissue concentrations were used to assess nickel, copper, zinc, cadmium, and lead phytoavailability to maize in a soil amended with metal salts or poultry manure. A sandy loam was treated with 80–400 mg kg−1 doses of a quinternary mixture of the metal nitrates either directly or as spiked poultry manure. The European Communities Bureau of Reference sequential extraction procedure partitioned the metals among three operationally defined pools in the soil. Metal mobilities were lower in the poultry manure–amended than the metal salt–treated soil, indicating the manure's ability to fix the metals in soil. Pot experiments revealed high metal transferabilities with no apparent phytotoxic symptoms in maize at the doses applied, suggesting some degree of tolerance to the metals. Heavy-metal concentrations in maize increased linearly with metal doses in metal salt–treated soil, but were less phytoavailable in soil amended with poultry manure. Heavy-metal concentrations in maize were reasonably predicted from soil parameters using stepwise multivariate regression models. The findings are useful in the assessment and remediation of heavy metal–contaminated soils.
    Communications in Soil Science and Plant Analysis 01/2012; 43(20). · 0.42 Impact Factor
  • Raymond A. Wuana, Felix E. Okieimen
    [Show abstract] [Hide abstract]
    ABSTRACT: Scattered literature is harnessed to critically review the possible sources, chemistry, potential biohazards and best available remedial strategies for a number of heavy metals (lead, chromium, arsenic, zinc, cadmium, copper, mercury and nickel) commonly found in contaminated soils. The principles, advantages and disadvantages of immobilization, soil washing and phytoremediation techniques which are frequently listed among the best demonstrated available technologies for cleaning up heavy metal contaminated sites are presented. Remediation of heavy metal contaminated soils is necessary to reduce the associated risks, make the land resource available for agricultural production, enhance food security and scale down land tenure problems arising from changes in the land use pattern.
    ISRN Ecology. 10/2011; 2011.
  • Source
    R. A. Wuana, F. E. Okieimen, J. A. Imborvungu
    [Show abstract] [Hide abstract]
    ABSTRACT: Changes in heavy metal speciation and uptake by maize in a soil before and after washing with chelating organic acids, citric acid, tartaric acid and ethylenediaminetetraacetic acid were assessed. A sandy loam was collected from the vicinity of the Benue industrial layout, Makurdi, Nigeria and spiked with a quinternary mixture of nickel, copper, zinc, cadmium and lead nitrates to achieve higher levels of contamination. Batch soil washing experiments performed on 1.0 g portions of the spiked soil using 0.05 M chelating agents at a solid:liquid ratio of 1:25 showed that washing efficiencies varied in the order: ethylenediaminetetraacetic acid> citric acid> tartaric acid with metal extraction yields typically following the sequence, copper> nickel> zinc> cadmium> lead. Sequential extractions proposed by the European Communities Bureau of Reference method used to assess the redistribution of heavy metal forms in the soil showed that apparent metal mobilities were reduced upon soil washing. Citric acid removed most of the metals hitherto associated with the exchangeable and reducible fractions; tartaric acid, the exchangeable metal pools; and ethylenediaminetetraacetic acid, the non-residual metal pools. Heavy metal assay of harvested biomass of maize grown on unwashed and washed soil samples indicated that metal transfer coefficients, decreased in the order of treatment: ethylenediaminetetraacetic acid <citric acid <tartaric acid <unwashed soil. Ethylenediaminetetraacetic acid and citric acid appeared to offer greater potentials as chelating agents to use in remediating the high permeability soil. Tartaric acid, however, is recommended in events of moderate contamination.
    International Journal of Environmental Science and Technology. 01/2010;