Shuling Zhao

Yangzhou University, Chiang-tu, Jiangsu, China

Are you Shuling Zhao?

Claim your profile

Publications (6)15.54 Total impact

  • Shuling Zhao · Jiahui Hao · Yanan Xue · Changyong Liang ·
    [Show abstract] [Hide abstract]
    ABSTRACT: The RNA-dependent RNA polymerase (RdRp) of rice stripe virus (RSV) is critical for both the transcription and replication of the viral genome. Despite its importance, little is known about how it functions in cells. In the present study, RSV RdRp was split into three pieces, since expression of the full protein could not be achieved. Then, the intracellular localization of these three RdRp fragments and their interactions with nucleocapsid protein (NP) were investigated, which is another viral protein required for viral RNA synthesis. The data showed that all three RdRp fragments displayed punctuate staining patterns in the cytoplasm, and the C-terminal fragment co-localized with NP in the perinuclear region. Both bimolecular fluorescence complementation and co-immunoprecipitation experiments demonstrated that of the three RdRp fragments, only the C-terminal fragment could interact with NP. Further analysis using a series of truncated NPs identified the N-terminal 50-amino-acid region within NP as the determinant for its interaction with the C-terminus of RdRp.
    Virus Genes 11/2015; 51(3). DOI:10.1007/s11262-015-1259-9 · 1.58 Impact Factor
  • Shuling Zhao · Yanan Xue · Jiahui Hao · Changyong Liang ·
    [Show abstract] [Hide abstract]
    ABSTRACT: The nucleocapsid protein (NP) of rice stripe virus (RSV) encapsidates viral genomic RNAs to form virion. The binding of NP with RNA is essential for the formation of virus particle. In this study, the binding specificity of RSV NP to RNA and the domains within the NP that mediate this interaction were investigated by gel electrophoretic mobility shift assays and Northwestern blot analysis. The results demonstrated that RSV NP was able to bind to all synthetic RNAs and DNAs without sequence specificity. Using a series of truncated NPs expressed in E. coli and synthetic peptides, we mapped the RNA-binding domain of NP to the central region from amino acid residues 201-232. Further alanine substitution analysis revealed that Lys(206), Lys(207), Lys(220), and Tyr(221) in the RNA-binding domain were essential for NP to bind with RNA.
    Virus Genes 08/2015; 51(2). DOI:10.1007/s11262-015-1235-4 · 1.58 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: orf124 (ac124) of AcMNPV is one of the highly conserved unique genes in group I lepidopteran nucleopolyhedroviruses. So far, its function remains unknown. In this study, infection with a virus expressing an ac124-gfp fusion showed that Ac124 localized to the cytoplasm throughout the infection. In addition, an ac124 knockout virus was generated to determine the role of ac124 in the baculovirus life cycle. Our results showed that an ac124 knockout AcMNPV could produce infectious budded viruses (BVs) and occlusion bodies (OBs) like those produced by the wild virus and ac124 repair virus. These three viruses had similar growth kinetics during the infection phase. There was no significant difference in nucleocapsids, occlusion-derived viruses and OBs visualized by electron microscopy. The ac124 deletion mutant did not reduce AcMNPV infectivity for S. exigua in an LD50 bioassay. However, it took 20 h longer for the ac124 deletion mutant to kill S. exigua than wild-type virus in the LT50 bioassay. Altogether, these results demonstrate that ac124 is not required for viral replication, but it accelerates the killing of infected larvae.
    Archives of Virology 11/2014; 160(1). DOI:10.1007/s00705-014-2277-y · 2.39 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: PK-1 (Ac10) is a baculovirus-encoded serine/threonine kinase and its function is unclear. Our results showed that a pk-1 knockout AcMNPV failed to produce infectious progeny, while the pk-1 repair virus could rescue this defect. qPCR analysis demonstrated that pk-1 deletion did not affect viral DNA replication. Analysis of the repaired recombinants with truncated pk-1 mutants demonstrated that the catalytic domain of protein kinases of PK-1 was essential to viral infectivity. Moreover, those PK-1 mutants that could rescue the infectious BV production defect exhibited kinase activity in vitro. Therefore, it is suggested that the kinase activity of PK-1 is essential in regulating viral propagation. Electron microscopy revealed that pk-1 deletion affected the formation of normal nucleocapsids. Masses of electron-lucent tubular structures were present in cell transfected with pk-1 knockout bacmid. Therefore, PK-1 appears to phosphorylate some viral or cellular proteins that are essential for DNA packaging to regulate nucleocapsid assembly.
    Virology 06/2013; 443(2). DOI:10.1016/j.virol.2013.05.025 · 3.32 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Rice stripe virus (RSV) belongs to the genus Tenuivirus and its genome consists of four single-stranded RNAs encoding seven proteins. Here, we have analyzed the processing and membrane association of Pc2 encoded by vcRNA2 in insect cells. The enhanced green fluorescent protein (eGFP) was fused to the Pc2 and used for the detection of Pc2 fusion proteins. The results showed that Pc2 was cleaved to produce two proteins named Pc2-N and Pc2-C. When expressed alone, either Pc2-N or Pc2-C could transport to the Endoplasmic reticulum (ER) membranes independently. Further mutagenesis studies revealed that Pc2 contained three ER-targeting domains. The results led us to propose a model for the topology of the Pc2 in which an internal signal peptide immediately followed a cleavage site, and two transmembrane regions are contained.
    Virology 05/2012; 429(2):148-54. DOI:10.1016/j.virol.2012.04.018 · 3.32 Impact Factor

  • Virology 01/2012; · 3.35 Impact Factor

Publication Stats

11 Citations
15.54 Total Impact Points

Top Journals


  • 2012-2015
    • Yangzhou University
      • College of Bioscience and Biotechnology
      Chiang-tu, Jiangsu, China