Nico E L Meessen

Universitair Medisch Centrum Groningen, Groningen, Groningen, Netherlands

Are you Nico E L Meessen?

Claim your profile

Publications (10)98.01 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The detection of outbreaks of methicillin-resistant Staphylococcus aureus (MRSA) infections and a rapid and accurate identification of sources and routes of transmission should be conducted in hospital settings as early and swiftly as possible. In this study, we investigated the application potential of a new approach based on multiple-locus variable-number tandem-repeat fingerprinting (MLVF) and microfluidics technology for a rapid discrimination of MRSA lineages in outbreak settings. A total of 206 nonrepetitive MRSA isolates recovered from infected patients at the University Medical Center Groningen between 2000 and 2010 were tested. The results obtained by MLVF using microcapillary electrophoresis with newly designed primers were compared to those obtained by spa typing and multiple-locus variable-number tandem-repeat analysis (MLVA). The discriminatory power was 0.980 (107 patterns), 0.969 (85 allelic profiles), and 0.959 (66 types) for MLVF, MLVA, and spa typing, respectively. All methods tested showed a good concordance of results calculated by the adjusted Rand's coefficient method. Comparisons of data obtained by the three approaches allowed us to propose an 88% cutoff value for the similarity between any two MLVF patterns, which can be used in S. aureus epidemiological studies, including analyses of outbreaks and strain transmission events. Of the three tested methods, MLVF is the cheapest, fastest, and easiest to perform. MLVF applied to microfluidic polymer chips is a rapid, cheap, reproducible, and highly discriminating tool to determine the clonality of MRSA isolates and to trace the spread of MRSA strains over periods of many years. Although spa typing should be used due to its portability of data, MLVF has a high added value because it is more discriminatory.
    Journal of clinical microbiology 05/2012; 50(7):2255-62. · 4.16 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Thermal stability is essential for the survival and well-being of preterm neonates. This is achieved in neonatal incubators by raising the ambient temperature and humidity to sufficiently high levels. However, potentially pathogenic microorganisms also can thrive in such warm and humid environments. We therefore investigated whether the level of microbial contamination (i.e., the bacterial load) inside neonatal incubators can be predicted on the basis of their average temperature and relative humidity settings, paying special attention to local temperature differences. Swab samples were taken from the warmest and coldest spots found within Caleo incubators, and these were plated to determine the number of microbial CFU per location. In incubators with high average temperature (≥ 34°C) and relative humidity (≥ 60%) values, the level of microbial contamination was significantly higher at cold spots than at hot spots. This relates to the fact that the local equilibrium relative humidity at cold spots is sufficiently high to sustain microbial growth. The abundance of staphylococci, which are the main causative agents of late-onset sepsis in preterm neonates, was found to be elevated significantly in cold areas. These findings can be used to improve basic incubator hygiene.
    Applied and Environmental Microbiology 12/2011; 77(24):8568-72. · 3.95 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To the Editor: Methicillin-resistant Staphylococcus aureus (MRSA) is spreading worldwide among humans and animals, including horses. Many reports of MRSA colonization and infection in horses come from Canada and involve MRSA of sequence type (ST) 8, classified by pulsed-field gel electrophoresis (PFGE) as Canadian MRSA-5 or USA500. ST8 is thought to be a human epidemic clone that has adapted to horses (1). Another MRSA type, ST398, has recently begun spreading in Europe and North America and is associated with livestock (2). In the Netherlands, MRSA of ST8 (spa-type t064) and ST398 (spa-type t011), which belong to the livestock-associated CC398, predominate in clinical samples from horses (3). To date, human clinical infections with livestock-associated MRSA are uncommon in persons who have not had contact with pigs or calves (2). In this case study, we describe the suspected transmission of MRSA ST398 between a horse and a girl, which resulted in infection of the girl's right foot.
    Emerging Infectious Diseases 06/2011; 17(6):1137-9. · 6.79 Impact Factor
  • Source
    BMC proceedings 01/2011; 5:1-1.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To assess the adequacy of preparedness planning for an influenza pandemic by modeling the pediatric surge capacity of healthcare facility and pediatric intensive care unit (PICU) requirements over time. Governments and Public Health authorities have planned preparedness activities and training for a flu pandemic. PICU facilities will be the limiting factor in healthcare provision for children but detailed analyses for needs and demands in PICU care have not been published. Based on the Center for Disease Control and Prevention and World Health Organization estimates and published models of the expected evolution of pandemic flu, we modeled the pediatric surge capacity of healthcare facility and PICU requirements over time. Various scenarios with different assumptions were explored. We compared these demands with estimates of maximal PICU capacity factoring in healthcare worker absenteeism as well as reported and more realistic estimates derived from semistructured telephone interviews with key stakeholders in ICUs in the study area. All hospitals and intensive care facilities in the Northern Region in The Netherlands with near 1.7 million inhabitants, of whom approximately 25% is <18 yrs. Using well-established modeling techniques, evidence-based medicine, and incorporating estimates from the Centers for Disease Control and Prevention and World Health Organization, we show that PICU capacity may suffice during an influenza pandemic. Even during the peak of the pandemic, most children requiring PICU admission may be served, even those who have nonflu-related conditions, provided that robust indications and decision rules are maintained, both for admission, as well as continuation (or discontinuation) of life support. We recommend that a model, with assumptions that can be adapted with new information obtained during early stages of the pandemic that is evolving, be an integral part of a preparedness plan for a pandemic influenza with new human transmissible agent like influenza A virus.
    Pediatric Critical Care Medicine 03/2010; 11(2):185-98. · 2.35 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Normally, humans are protected against infections by their anaerobic intestinal microorganisms providing colonization resistance. In immunocompromised patients, the endogenous intestinal gram-positive and gram-negative pathogens often cause infectious complications. Therefore, we analyzed the effect of chemotherapy treatment and antimicrobial prophylaxis on intestinal bacterial populations (microbiota) among pediatric patients with acute myeloid leukemia who are prone to intestinal mucositis and infections. During 36 chemotherapy cycles, fecal samples were collected from pediatric patients with acute myeloid leukemia. Fecal bacterial populations were analyzed by polymerase chain reaction denaturing gradient gel electrophoresis fingerprinting. Fluorescent in situ hybridization analysis with specific bacterial oligonucleotide probes was used to quantify the fecal bacteria. During chemotherapy treatment, the total number of bacteria in fecal samples was 10(9) per gram of dry weight feces, which was 100-fold lower than than in healthy control samples. Fluorescent in situ hybridization analysis showed that this decrease was the result of an up to 10,000-fold decrease in anaerobic bacteria, partly compensated for by a 100-fold increase in potentially pathogenic enterococci. Additional experiments showed that both prophylactic and therapeutic use of antibiotics could not sufficiently explain the tremendous changes in intestinal microbial composition. In vitro tests showed a direct bacteriostatic effect of chemotherapeutics. Patients with acute myeloid leukemia treated with chemotherapy and prophylactic antibiotics are unable to maintain colonization resistance because of a decrease in anaerobic bacteria and an increase in potentially pathogenic aerobic enterococci. We hypothesize that this disturbance in the balance between anaerobic and aerobic bacteria will further increase the risk of gram-positive aerobic infections among immunocompromised patients with cancer.
    Clinical Infectious Diseases 08/2009; 49(2):262-70. · 9.37 Impact Factor
  • Source
    New England Journal of Medicine 06/2009; 360(20):2138; author reply 2140-1. · 54.42 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Viridans group streptococci (VGS) are a well-known cause of infections in immunocompromised patients, accounting for severe morbidity and mortality. Streptococcus mitis group species (Streptococcus mitis, Streptococcus pneumoniae, Streptococcus oralis) are among the VGS most often encountered in clinical practice. Identifying the portal of entry for S. mitis group strains is crucial for interventions preventing bacterial translocation. Unfortunately, tracking the source of S. mitis group strains is dependent on a combination of extremely laborious and time-consuming cultivation and molecular techniques (enterobacterial repetitive intergenic consensus-PCR [ERIC-PCR]). To simplify this procedure, a PCR analysis with newly designed primers targeting the household gene glucose kinase (gki) was used in combination with denaturing gradient gel electrophoresis (DGGE). This gki-PCR-DGGE technique proved to be specific for S. mitis group strains. Moreover, these strains could be detected in samples comprised of highly diverse microbiota, without prior cultivation. To study the feasibility of this new approach, a pilot study was performed. This confirmed that the source of S. mitis group bacteremia in pediatric patients with acute myeloid leukemia could be tracked back to the throat in five out of six episodes of bacteremia, despite the fact that throat samples are polymicrobial samples containing multiple S. mitis group strains. In contrast, using the classical combination of cultivation techniques and ERIC-PCR, we could detect these strains in only two out of six cases, showing the superiority of the newly developed technique. The new gki-PCR-DGGE technique can track the source of S. mitis group strains in polymicrobial samples without prior cultivation. Therefore, it is a valuable tool in future epidemiological studies.
    Journal of clinical microbiology 06/2009; 47(7):2181-6. · 4.16 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In The Netherlands a major part of preparedness planning for an epidemic or pandemic consists of maintaining essential public services, e.g., by the police, fire departments, army personnel, and healthcare workers. We provide estimates for peak demand for healthcare workers, factoring in healthcare worker absenteeism and using estimates from published epidemiologic models on the expected evolution of pandemic influenza in relation to the impact on peak surge capacity of healthcare facilities and intensive care units (ICUs). Using various published scenarios, we estimate their effect in increasing the availability of healthcare workers for duty during a pandemic. We show that even during the peak of the pandemic, all patients requiring hospital and ICU admission can be served, including those who have non-influenza-related conditions. For this rigorous task differentiation, clear hierarchical management, unambiguous communication, and discipline are essential and we recommend informing and training non-ICU healthcare workers for duties in the ICU.
    Emerging Infectious Diseases 11/2008; 14(10):1518-25. · 6.79 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Using estimates from the Centers for Disease Control and Prevention, the World Health Organization, and published models of the expected evolution of pandemic influenza, we modeled the surge capacity of healthcare facility and intensive care unit (ICU) requirements over time in northern Netherlands (approximately 1.7 million population). We compared the demands of various scenarios with estimates of maximum ICU capacity, factoring in healthcare worker absenteeism as well as reported and realistic estimates derived from semistructured telephone interviews with key management in ICUs in the study area. We show that even during the peak of the pandemic, most patients requiring ICU admission may be served, even those who have non-influenza-related conditions, provided that strong indications and decision-making rules are maintained for admission as well as for continuation (or discontinuation) of life support. Such a model should be integral to a preparedness plan for a pandemic with a new human-transmissible agent.
    Emerging infectious diseases 12/2007; 13(11):1714-9. · 5.99 Impact Factor