Jenny Z Zhang

University of Sydney, Sydney, New South Wales, Australia

Are you Jenny Z Zhang?

Claim your profile

Publications (9)44.16 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: The rapid and premature reduction of platinum(IV) complexes in vivo is a significant impediment to these complexes being successfully employed as anti-cancer prodrugs. This study investigates the influence of the platinum(IV) coordination sphere on the ease of reduction of the platinum centre in various biological contexts. In the presence of the biological reductants, ascorbate and cysteine, platinum(IV) complexes with dicarboxylato equatorial ligands were observed to exhibit lower reduction potentials and slower reduction rates than analogous platinum(IV) complexes with dichlorido equatorial ligands. Diaminetetracarboxylatoplatinum(IV) complexes exhibited unusually long half-lives in the presence of excess reductants; however, the complexes exhibited moderate potency in vitro, indicative of rapid reduction within the intracellular environment. Using XANES spectroscopy, trans-[Pt(OAc)2(ox)(en)] and trans-[Pt(OAc)2(Cl)2(en)] were observed to be reduced at a similar rate within DLD-1 cancer cells. This large variability in kinetic inertness of diaminetetracarboxylatoplatinum(IV) complexes in different biological contexts has significant implications for the design of platinum(IV) pro-drugs.
    Journal of Medicinal Chemistry 10/2013; · 5.61 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Facile strategies were developed for the versatile functionalization of platinum(IV) axial sites, allowing for easy accessibility to unsymmetric mono- and mixed-carboxylato, as well as symmetric di-substituted platinum(IV) complexes. The first method involves the direct oxidation and carboxylation of the platinum(II) center using an appropriate peroxide and the carboxylate of choice to firstly yield a monocarboxylato monohydroxido platinum(IV) complex. This platinum(IV) intermediate can undergo further carboxylation to give rise to a mixed-carboxylato platinum(IV) complex. The second method involves the activation of the carboxylate of choice by a common carbodiimide coupling reagent, and its reaction with a dihydroxido platinum(IV) precursor to give the monocarboxylato platinum(IV) complex. Uronium salts can be employed to promote efficient dicarboxylation of the dihydroxido platinum(IV) precursor. Lastly, an axial azide pendant group was demonstrated to be suitable for orthogonal "click" conjugation reactions.
    Chemistry - A European Journal 12/2012; · 5.93 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Elemental mapping and fluorescence imaging techniques are frequently employed to probe the distribution of platinum-based chemotherapeutics within biological systems. Although useful, these techniques have unique limitations: elemental mapping methods, such as those that use particle beams, typically require rigorous sample preparation that can alter chemical distributions, whilst in situ visible fluorescence studies require fluorescent-tagging of the platinum component and may be confounded by factors such as ligand loss. The present study aimed to establish reliable methods for accurately probing the bio-distribution of platinum compounds within the model tumour micro-environment of the well characterised DLD-1 colorectal cancer cell spheroids. 3D X-ray fluorescence computed micro-tomography (XRF-CT) was performed on intact untreated spheroids to determine the effect of physical sectioning and chemical fixation on elemental distributions. It was revealed for the first time that cisplatin can readily penetrate through DLD-1 spheroids and accumulate in the central hypoxic and necrotic regions of the spheroids. Furthermore, formalin fixing was shown to cause significant changes to the distributions and concentrations of the elements, particularly in the cases of platinum and zinc. This effect was not observed in the cryo-fixed and cryo-sectioned samples. X-ray fluorescence microscopy (XFM) was used to re-examine the fate of platinum in the previously reported fluorescence distribution studies of platinum(ii) complexes tagged with fluorescent anthraquinone moieties. In contrast to the fluorescence distributions, in which fluorescence was observed predominantly around the periphery of the spheroids, the XFM revealed a high level of platinum in the spheroid centre, indicating that ligand exchange occurred within the peripheral cell layers. Both the platinum maps and the fluorescence images exhibit similar diffusion trends, supporting the conclusion that charge on the compound can slow cellular uptake can enhance tumour penetration.
    Metallomics 10/2012; 4(11):1209-17. · 4.10 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Determining the chemical and biological compositions of the tumour models used in pharmacological studies is crucial for understanding the interactions between the drug molecules and the tumour micro-environment. Conventional techniques for spheroid characterisation require intensive chemical pre-treatments that result in the removal of unbound metabolites. In this study, the spectroscopic techniques, scanning transmission ion microscopy (STIM), proton-induced X-ray emission (PIXE) mapping, scanning X-ray fluorescence microscopy (SXFM), and Fourier transform infrared (FT-IR) imaging were employed to gain complementary information on the compositions of untreated DLD-l cancer cell spheroids. When used together, these techniques exhibited great potential for providing a comprehensive over-view of the density, biochemistry and elemental compositions within the different regions of the spheroids. STIM density and elemental maps correlated well with cellular density across the spheroid, and showed the accumulation of S, Cu and various lighter elements in the necrotic region. High levels of oxidative stress were evident in the hypoxic region, and different degrees of cellular necrosis as well as high levels of lactate and collagen within the necrotic region were suggested by FT-IR markers. FT-IR imaging was further employed to study the pharmacodynamics of known the cytotoxins, cisplatin and Pt1C3. Cisplatin was observed to induce minimal biochemical changes to the spheroids following 24 hour incubations, whereas Pt1C3 caused severe cellular damage to the spheroid periphery; consistent with their different modes of action.
    Integrative Biology 08/2012; 4(9):1072-80. · 4.32 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The platinum(II) drugs cisplatin, carboplatin and oxaliplatin are usefully employed against a range of malignancies, but toxicities and resistance have spurred the search for improved analogs. This has included investigation of the platinum(IV) oxidation state, which provides greater kinetic inertness. It is generally accepted that Pt(IV) complexes must be reduced to Pt(II) for activation. As such, the ability to monitor reduction of Pt(IV) complexes is critical to guiding the design of candidates, and providing mechanistic understanding. Here we report in full that the white line height of X-ray absorption near-edge spectra (XANES) of Pt complexes, normalized to the post-edge minima, can be used to quantitatively determine the proportion of each oxidation state in a mixture. A series of Pt(IV) complexes based on the Pt(II) complexes cisplatin and transplatin were prepared with chlorido, acetato or hydroxido axial ligands, and studies into their reduction potential and cytotoxicity against A2780 human ovarian cancer cells were performed, demonstrating the relationship between reduction potential and cytotoxicity. Analysis of white line height demonstrated a clear and consistent difference between Pt(II) (1.52 ± 0.05) and Pt(IV) (2.43 ± 0.19) complexes. Reduction of Pt(IV) complexes over time in cell growth media and A2780 cells was observed by XANES, and shown to correspond with their reduction potentials and cytotoxicities. We propose that this method is useful for monitoring reduction of metal-based drug candidates in complex biological systems.
    Metallomics 05/2012; 4(6):568-75. · 4.10 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In contrast to the Pt(IV) derivatives of cisplatin, Pt(IV) derivatives of oxaliplatin do not show the expected correlation between the electrochemical reduction potentials and rates of reduction by ascorbate. This is probably due to the lower ability of the amine and carboxylato ligands to form a bridge with the reducing agents to facilitate electron transfer.
    Chemical Communications 11/2011; 48(6):847-9. · 6.38 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The penetration of anthraquinones and their platinum complexes into cancer cell spheroids reveals that they model well the distribution of such compounds in solid tumours and that the proportion of the compound that accumulates deep in the spheroid is inversely related to the rate of cellular uptake which is affected by the charge of the compound.
    Chemical Communications 06/2009; · 6.38 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Analogues of cytotoxic cis and trans dichloridoplatinum(II) complexes with one ammonia and one aromatic amine (cis- and trans-[PtCl(2)(aromatic amine)(NH(3))]) were synthesised in which the aromatic group was replaced by the fluorescent ligand 7-azaindole (1). Coordination resulted in almost complete quenching of the fluorescence and the ligand had a effect on the biological activities of the cis and trans isomers similar to that previously reported for aromatic amines as is exemplified by them having similar cytotoxicities (IC(50) 3.6(5) and 6.0(19)microM, respectively). Observation of fluorescence following treatment of the cis complex with cysteine, glutathione, or methionine suggests labilisation and subsequent loss of the putative non-leaving group ligands. No such effect was observed for the trans complex which does not experience trans labilisation. Two-photon excitation of cells that had been treated with the complexes gave rise to observable fluorescence, suggesting ligand displacement for both complexes. The fluorescence appears to be localised in the lysosomes or late endosomes. These complexes are excellent models of analogues of cytotoxic cis and trans complexes with aromatic amine ligands and can be used to study the metabolism of the non-leaving group positions.
    Journal of inorganic biochemistry 06/2009; 103(8):1120-5. · 3.25 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Coordination of the aniline containing fluorophores, coumarin 120 (C120) and coumarin 151 (C151) at the non-leaving group positions of cisplatin analogues (giving cis-[PtCl(2)(C120)(NH(3))] and cis-[PtCl(2)(C151)(NH(3))]) resulted in partial and complete quenching of the fluorescence, respectively. Oxidation of the coumarin 120 complex to the Pt(iv) form (cis,trans,cis-[PtCl(2)(OH)(2)(C120)(NH(3))]) resulted in further quenching compared to that seen for the Pt(ii) complex. The fluorescence profiles of these coumarin complexes were collected to evaluate their suitability for studying the metabolism of cisplatin-based anticancer drugs. C151 has the more suitable profile with a lower energy excitation peak and a better separation between the excitation and emission spectra. The complete damping of fluorescence on coordination to Pt(ii) makes it unsuitable for monitoring the reduction process, but does allow it to be used to monitor loss of the aniline type ligand. All of the coumarin complexes revealed moderate cyotoxcities in the range 10-22 microM indicating that they are suitable models of anticancer agents. DNA dampens the fluorescence of both Pt(ii) complexes and that of C120 has a much higher DNA binding affinity (10 000 M(-1)) than does the complex of C151 (300 M(-1)). Treatment of A2780 human ovarian carcinoma cells with the Pt-coumarin complexes resulted in fluorescence visible by confocal microscopy, and co-localisation studies with organelle specific dyes suggest they are concentrated in the late endosomes or lysosomes. Cells treated with the Pt(iv) complex of C120 revealed strong fluorescence and a somewhat different distribution to cells treated with the Pt(ii) complex indicating reduction following uptake.
    Dalton Transactions 05/2009; · 4.10 Impact Factor