Xiu-Yan Wei

Shenyang Pharmaceutical University, Feng-t’ien, Liaoning, China

Are you Xiu-Yan Wei?

Claim your profile

Publications (4)9.69 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this study was to investigate the hepatoprotective effect of Matrine salvianolic acid B salt on carbon tetrachloride (CCl4)-induced hepatic fibrosis in rats. Salvianolic acid B and Matrine has long been used to treat liver fibrosis. Matrine salvianolic acid B salt is a new compound containing Salvianolic acid B and Matrine. Hepatic fibrosis induced by CCl4 was studied in animal models using Wistar rats. Organ coefficient, serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), hexadecenoic acid (HA), laminin (LN), hydroxyproline (Hyp), and glutathione (GSH), malondialdehyde (MDA), superoxide dismutase (SOD) in liver tissues were measured, respectively. Histopathological changes in the livers were studied by hematoxylin-eosin (H&E) staining and Masson Trichrome (MT) examination. The expression of transforming growth factor-β1 (TGF-β1) and α-smooth muscle actin (α-SMA) was observed by immunohistochemical analysis. A significant reduction in serum levels of AST, ALT, HA, LN and Hyp was observed in the Matrine salvianolic acid B salt treated groups, suggesting that the salt had hepatoprotective effects. The depletion of GSH and SOD, as well as MDA accumulation in liver tissues was suppressed by Matrine salvianolic acid B salt too. The expression of TGF-β1 and α-SMA measured by immunohistology was significantly reduced by Matrine salvianolic acid B salt in a dose-dependent manner. Matrine salvianolic acid B salt treatment attenuated the necro-inflammation and fibrogenesis induced by CCl4 injection, and thus it is promising as a therapeutic anti-fibrotic agent against hepatic fibrosis.
    Journal of Inflammation 05/2012; 9(1):16. · 2.55 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study was performed to investigate the mechanism of the blood-brain tumor-barrier (BTB) permeability increase, which was induced by NS1619, a selective K(Ca) channel activator. Using a rat brain glioma (C6) model, we exam the expression of ZO-1 and occludin in mRNA and protein level at different time point after intracarotid infusion of NS1619 (30 μg/kg/min) to tumor sites via RT-PCR and Western blot analysis. The mRNA and protein expression of ZO-1 and occludin had no great change before infusion and began to decrease significantly after 2 h NS1619 infusion, which was significantly attenuated by reactive oxygen species (ROS) scavenger (N-2-mercaptopropionyl glycine, MPG). In addition, MPG also significantly inhibited the increase of BTB permeability and malonaldehyde (MDA) level induced by NS1619. This led to the conclusion that NS1619 could time-dependently increase the BTB permeability by down-regulating the expression of tight junction protein, and this effect could be reversed by ROS.
    Neuroscience Letters 02/2011; 493(3):140-4. · 2.03 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The potential for topical delivery of meloxicam was investigated by examining its pharmacokinetic profiles in plasma and synovial fluid following oral and transdermal administration in Beagle dogs. The experiment was a two-period, crossover design using 6 Beagle dogs. Meloxicam tablets were administered orally at a dose of 0.31 mg/kg, and meloxicam gel was administered transdermally at a dose of 1.25 mg/kg. Drug concentrations in plasma and synovial fluid were determined by liquid chromatography-tandem mass spectrometry (LC/MS/MS). The pharmacokinetic parameters were calculated using the Topfit 2.0 program. The pharmacokinetic results showed that AUC(0-t) (23.9+/-8.26 microg.h.mL(-1)) in plasma after oral administration was significantly higher than after transdermal delivery (1.00+/-0.43 microg.h.mL(-1)). In contrast, the ratio of the average concentration in synovial fluid to that in plasma following transdermal administration was higher than that for an oral delivery. The synovial fluid concentration in the treated leg was much higher than that in the untreated leg, whereas the synovial fluid concentration in the untreated leg was similar to the plasma concentration. The high concentration ratio of synovial fluid to plasma indicates direct penetration of meloxicam following topical administration to the target tissue. This finding is further supported by the differences observed in meloxicam concentrations in synovial fluid in the treated and untreated joints at the same time point. Our results suggest that transdermal delivery of meloxicam is a promising method for decreasing its adverse systemic effects.Acta Pharmacologica Sinica (2009) 30: 1060-1064; doi: 10.1038/aps.2009.73; published online 8 June 2009.
    Acta Pharmacologica Sinica 07/2009; 30(7):1060-4. · 2.35 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The anxiolytic effect of the saponins from Aniliaeea Panax quinquefolium L. (PQS) was studied in male mice by using a number of experimental paradigms of anxiety and compared with that of the known anxiolytic compound diazepam. Use of the elevated plus-maze test revealed that PQS (50 mg/kg, p.o.) and diazepam (2.5 mg/kg, p.o.) increased the percentage of time and entries spent in open arms. In the light/dark test, PQS (50 and 100 mg/kg, p.o.) and diazepam (2.5 mg/kg, p.o.) prolonged the time spent in the light area. In the hole-board test, PQS (50 and 100 mg/kg, p.o.) and diazepam (2.5 mg/kg, p.o.) significantly increased both head-dip counts and head-dip duration. Both PQS (50 and 100 mg/kg, p.o.) and diazepam (2.5 mg/kg, p.o.) decreased the total fighting time in the isolation-induced aggressive test. Since PQS, in contrast to diazepam, had no effect on locomotion in these tests, its side-effect profile might be considered superior to the benzodiazepines. Thus, the present findings suggest that PQS might be a potential candidate for use as an anxiolytic drug.
    Journal of Ethnopharmacology 06/2007; 111(3):613-8. · 2.76 Impact Factor

Publication Stats

33 Citations
9.69 Total Impact Points

Institutions

  • 2007–2012
    • Shenyang Pharmaceutical University
      • • School of Traditional Chinese Materia Medica
      • • Department of Pharmacology
      Feng-t’ien, Liaoning, China