Iannis Aifantis

Polytechnic Institute of New York University, Brooklyn, New York, United States

Are you Iannis Aifantis?

Claim your profile

Publications (92)1449.33 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Juvenile Myelomonocytic Leukemia (JMML), Acute Myeloid Leukemia (AML) and other myeloproliferative neoplasms (MPN) are genetically heterogeneous but frequently display activating mutations in Ras GTPases and activation of Signal Transducer and Activator of Transcription 3 (STAT3). Altered STAT3 activity is observed in up to 50% of AML correlating with poor prognosis. Activated STAT proteins, classically associated with tyrosine phosphorylation, support tumor development as transcription factors, but alternative STAT functions independent of tyrosine phosphorylation have been documented, including roles for serine phosphorylated STAT3 in mitochondria supporting transformation by oncogenic Ras. We examined requirements for STAT3 in experimental murine K-Ras-dependent hematopoietic neoplasia. We show that STAT3 is phosphorylated on S727 but not Y705 in diseased animals. Moreover, a mouse with a point mutation abrogating STAT3 S727 phosphorylation displayed delayed onset and decreased disease severity with significantly extended survival. Activated K-Ras required STAT3 for cytokine-independent growth of myeloid progenitors in vitro, and mitochondrially restricted STAT3 and STAT3-Y705F, both transcriptionally inert mutants, supported factor-independent growth. STAT3 was dispensable for growth of normal or K-Ras-mutant myeloid progenitors in response to cytokines. However, abrogation of STAT3-S727 phosphorylation impaired factor-independent malignant growth. These data document that serine phosphorylated mitochondrial STAT3 supports neoplastic hematopoietic cell growth induced by K-Ras.
    Blood 08/2014; · 9.78 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: T-cell acute lymphoblastic leukaemia (T-ALL) is a haematological malignancy with a dismal overall prognosis, including a relapse rate of up to 25%, mainly because of the lack of non-cytotoxic targeted therapy options. Drugs that target the function of key epigenetic factors have been approved in the context of haematopoietic disorders, and mutations that affect chromatin modulators in a variety of leukaemias have recently been identified; however, 'epigenetic' drugs are not currently used for T-ALL treatment. Recently, we described that the polycomb repressive complex 2 (PRC2) has a tumour-suppressor role in T-ALL. Here we delineated the role of the histone 3 lysine 27 (H3K27) demethylases JMJD3 and UTX in T-ALL. We show that JMJD3 is essential for the initiation and maintenance of T-ALL, as it controls important oncogenic gene targets by modulating H3K27 methylation. By contrast, we found that UTX functions as a tumour suppressor and is frequently genetically inactivated in T-ALL. Moreover, we demonstrated that the small molecule inhibitor GSKJ4 (ref. 5) affects T-ALL growth, by targeting JMJD3 activity. These findings show that two proteins with a similar enzymatic function can have opposing roles in the context of the same disease, paving the way for treating haematopoietic malignancies with a new category of epigenetic inhibitors.
    Nature 08/2014; · 38.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Notch signaling is a key developmental pathway that is subject to frequent genetic and epigenetic perturbations in many different human tumors. Here we investigate whether long noncoding RNA (lncRNA) genes, in addition to mRNAs, are key downstream targets of oncogenic Notch1 in human T cell acute lymphoblastic leukemia (T-ALL). By integrating transcriptome profiles with chromatin state maps, we have uncovered many previously unreported T-ALL-specific lncRNA genes, a fraction of which are directly controlled by the Notch1/Rpbjκ activator complex. Finally we have shown that one specific Notch-regulated lncRNA, LUNAR1, is required for efficient T-ALL growth in vitro and in vivo due to its ability to enhance IGF1R mRNA expression and sustain IGF1 signaling. These results confirm that lncRNAs are important downstream targets of the Notch signaling pathway, and additionally they are key regulators of the oncogenic state in T-ALL.
    Cell. 07/2014; 158(3):593-606.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Tissue homeostasis depends largely on the ability to replenish impaired or aged cells. Thus, tissue-resident stem cells need to provide functional progeny throughout the lifetime of an organism. Significant work in the past years has characterized how stem cells integrate signals from their environment to shape regulatory transcriptional networks and chromatin-regulating factors that control stem cell differentiation or maintenance. There is increasing interest in how post-translational modifications, and specifically ubiquitylation, control these crucial decisions. Ubiquitylation modulates the stability and function of important factors that regulate key processes in stem cell behavior. In this review, we analyze the role of ubiquitylation in embryonic stem cells and different adult multipotent stem cell systems and discuss the underlying mechanisms that control the balance between quiescence, self-renewal, and differentiation. We also discuss deregulated processes of ubiquitin-mediated protein degradation that lead to the development of tumor-initiating cells.
    EMBO Reports 03/2014; · 7.19 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Since Notch phenotypes in Drosophila melanogaster were first identified 100 years ago, Notch signaling has been extensively characterized as a regulator of cell-fate decisions in a variety of organisms and tissues. However, in the past 20 years, accumulating evidence has linked alterations in the Notch pathway to tumorigenesis. In this review, we discuss the protumorigenic and tumor-suppressive functions of Notch signaling, and dissect the molecular mechanisms that underlie these functions in hematopoietic cancers and solid tumors. Finally, we link these mechanisms and observations to possible therapeutic strategies targeting the Notch pathway in human cancers.
    Cancer cell 03/2014; 25(3):318-334. · 25.29 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The Notch signaling pathway is a regulator of self renewal and differentiation in several tissues and cell types. Notch is a binary cell fate determinant and its hyper-activation has been implicated as oncogenic in several cancers including breast cancer and T-cell acute lymphoblastic leukemia. Recently several studies also unraveled tumor suppressor roles for Notch signaling in different tissues, including tissues where it was before recognized as an oncogene in specific lineages. Whereas involvement of Notch as an oncogene in several lymphoid malignancies (T-ALL, B-chronic lymphocytic leukemia, splenic marginal zone lymphoma) is well characterized, there is growing evidence involving Notch signaling as a tumor suppressor in myeloid malignancies. It therefore appears that Notch signaling pathway's oncogenic or tumor suppressor abilities are highly context dependent. In this review we summarize and discuss latest advances in the understanding of this dual role in hematopoiesis and the possible consequences for the treatment of hematological malignancies.
    Blood 03/2014; · 9.78 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mammary epithelial stem cells are fundamental to maintain tissue integrity. Cancer stem cells (CSCs) are implicated in both treatment resistance and disease relapse, and the molecular bases of their malignant properties are still poorly understood. Here we show that both normal stem cells and CSCs of the breast are controlled by the prolyl-isomerase Pin1. Mechanistically, following interaction with Pin1, Notch1 and Notch4, key regulators of cell fate, escape from proteasomal degradation by their major ubiquitin-ligase Fbxw7α. Functionally, we show that Fbxw7α acts as an essential negative regulator of breast CSCs' expansion by restraining Notch activity, but the establishment of a Notch/Pin1 active circuitry opposes this effect, thus promoting breast CSCs self-renewal, tumor growth and metastasis in vivo. In human breast cancers, despite Fbxw7α expression, high levels of Pin1 sustain Notch signaling, which correlates with poor prognosis. Suppression of Pin1 holds promise in reverting aggressive phenotypes, through CSC exhaustion as well as recovered drug sensitivity carrying relevant implications for therapy of breast cancers.
    EMBO Molecular Medicine 12/2013; · 7.80 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Somatic Addition of Sex Combs Like 1 (ASXL1) mutations occur in 10-30% of patients with myeloid malignancies, most commonly in myelodysplastic syndromes (MDSs), and are associated with adverse outcome. Germline ASXL1 mutations occur in patients with Bohring-Opitz syndrome. Here, we show that constitutive loss of Asxl1 results in developmental abnormalities, including anophthalmia, microcephaly, cleft palates, and mandibular malformations. In contrast, hematopoietic-specific deletion of Asxl1 results in progressive, multilineage cytopenias and dysplasia in the context of increased numbers of hematopoietic stem/progenitor cells, characteristic features of human MDS. Serial transplantation of Asxl1-null hematopoietic cells results in a lethal myeloid disorder at a shorter latency than primary Asxl1 knockout (KO) mice. Asxl1 deletion reduces hematopoietic stem cell self-renewal, which is restored by concomitant deletion of Tet2, a gene commonly co-mutated with ASXL1 in MDS patients. Moreover, compound Asxl1/Tet2 deletion results in an MDS phenotype with hastened death compared with single-gene KO mice. Asxl1 loss results in a global reduction of H3K27 trimethylation and dysregulated expression of known regulators of hematopoiesis. RNA-Seq/ChIP-Seq analyses of Asxl1 in hematopoietic cells identify a subset of differentially expressed genes as direct targets of Asxl1. These findings underscore the importance of Asxl1 in Polycomb group function, development, and hematopoiesis.
    Journal of Experimental Medicine 11/2013; · 13.21 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The bone marrow (BM) microenvironment is composed of multiple niche cells that, by producing paracrine factors, maintain and regenerate the hematopoietic stem cell (HSC) pool (Morrison and Spradling, 2008). We have previously demonstrated that endothelial cells support the proper regeneration of the hematopoietic system following myeloablation (Butler et al., 2010; Hooper et al., 2009; Kobayashi et al., 2010). Here, we demonstrate that expression of the angiocrine factor Jagged-1, supplied by the BM vascular niche, regulates homeostatic and regenerative hematopoiesis through a Notch-dependent mechanism. Conditional deletion of Jagged-1 in endothelial cells (Jag1((ECKO)) mice) results in a profound decrease in hematopoiesis and premature exhaustion of the adult HSC pool, whereas quantification and functional assays demonstrate that loss of Jagged-1 does not perturb vascular or mesenchymal compartments. Taken together, these data demonstrate that the instructive function of endothelial-specific Jagged-1 is required to support the self-renewal and regenerative capacity of HSCs in the adult BM vascular niche.
    Cell Reports 09/2013; · 7.21 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Recent studies have identified recurrent mutations in SETBP1, the gene that encodes SET-binding protein 1, in several types of myeloid malignancies, including chronic myeloid and acute myeloid leukemias. The identified mutations frequently target the SKI-homologous domain, although the exact pathogenic mechanisms remain unknown.
    Nature Genetics 08/2013; 45(8):846-7. · 35.21 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Tight control of antigen-receptor gene rearrangement is required to preserve genome integrity and prevent the occurrence of leukaemia and lymphoma. Nonetheless, mistakes can happen, leading to the generation of aberrant rearrangements, such as Tcra/d-Igh inter-locus translocations that are a hallmark of ataxia telangiectasia-mutated (ATM) deficiency. Current evidence indicates that these translocations arise from the persistence of unrepaired breaks converging at different stages of thymocyte differentiation. Here we show that a defect in feedback control of RAG2 activity gives rise to bi-locus breaks and damage on Tcra/d and Igh in the same T cell at the same developmental stage, which provides a direct mechanism for generating these inter-locus rearrangements. Both the RAG2 C-terminus and ATM prevent bi-locus RAG-mediated cleavage through modulation of three-dimensional conformation (higher-order loops) and nuclear organization of the two loci. This limits the number of potential substrates for translocation and provides an important mechanism for protecting genome stability.
    Nature Communications 07/2013; 4:2231. · 10.02 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Sequencing efforts led to the identification of somatic mutations that could affect the self-renewal and differentiation of cancer-initiating cells. One such recurrent mutation targets the binding pocket of the ubiquitin ligase Fbxw7. Missense FBXW7 mutations are prevalent in various tumors, including T cell acute lymphoblastic leukemia (T-ALL). To study the effects of such lesions, we generated animals carrying regulatable Fbxw7 mutant alleles. Here, we show that these mutations specifically bolster cancer-initiating cell activity in collaboration with Notch1 oncogenes but spare normal hematopoietic stem cell function. We were also able to show that FBXW7 mutations specifically affect the ubiquitylation and half-life of c-Myc protein, a key T-ALL oncogene. Using animals carrying c-Myc fusion alleles, we connected Fbxw7 function to c-Myc abundance and correlated c-Myc expression to leukemia-initiating activity. Finally, we demonstrated that small-molecule-mediated suppression of MYC activity leads to T-ALL remission, suggesting an effective therapeutic strategy.
    Cell 06/2013; 153(7):1552-66. · 31.96 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Accumulating evidence suggests that Notch signaling is active at multiple points during hematopoiesis. Until recently, the majority of such studies focused on Notch signaling in lymphocyte differentiation and knowledge of individual Notch receptor roles has been limited due to a paucity of genetic tools available. In this manuscript we generate and describe animal models to identify and fate-map stem and progenitor cells expressing each Notch receptor, delineate Notch pathway activation, and perform in vivo gain- and loss-of-function studies dissecting Notch signaling in early hematopoiesis. These models provide comprehensive genetic maps of lineage-specific Notch receptor expression and activation in hematopoietic stem and progenitor cells. Moreover, they establish a previously unknown role for Notch signaling in the commitment of blood progenitors toward the erythrocytic lineage and link Notch signaling to optimal organismal response to stress erythropoiesis.
    Cell stem cell 06/2013; · 23.56 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The molecular mechanisms regulating leukemia-initiating cell (LIC) function are of important clinical significance. We use chronic myelogenous leukemia (CML) as a model of LIC-dependent malignancy and identify the interaction between the ubiquitin ligase Fbw7 and its substrate c-Myc as a regulator of LIC homeostasis. Deletion of Fbw7 leads to c-Myc overexpression, p53-dependent LIC-specific apoptosis, and the eventual inhibition of tumor progression. A decrease of either c-Myc protein levels or attenuation of the p53 response rescues LIC activity and disease progression. Further experiments showed that Fbw7 expression is required for survival and maintenance of human CML LIC. These studies identify a ubiquitin ligase:substrate pair regulating LIC activity, suggesting that targeting of the Fbw7:c-Myc axis is an attractive therapy target in refractory CML.
    Cancer cell 03/2013; 23(3):362-75. · 25.29 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: V(D)J recombination is essential for generating a diverse array of B and T cell receptors that can recognize and combat foreign antigens. As with any recombination event, tight control is essential to prevent the occurrence of genetic anomalies that drive cellular transformation. One important aspect of regulation is directed targeting of the RAG recombinase. Indeed, RAG accumulates at the 3' end of individual antigen receptor loci poised for rearrangement; however, it is not known whether focal binding is involved in regulating cleavage, and what mechanisms lead to enrichment of RAG in this region. Here, we show that monoallelic looping out of the 3' end of the T cell receptor α (Tcra) locus, coupled with transcription and increased chromatin/nuclear accessibility, is linked to focal RAG binding and ATM-mediated regulation of monoallelic cleavage on looped-out 3' regions. Our data identify higher-order loop formation as a key determinant of directed RAG targeting and the maintenance of genome stability.
    Cell Reports 02/2013; 3(2):359-70. · 7.21 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The physiological basis and mechanistic requirements for a large number of functional immunoreceptor tyrosine-based activation motifs (ITAMs; high ITAM multiplicity) in the complex of the T cell antigen receptor (TCR) and the invariant signaling protein CD3 remain obscure. Here we found that whereas a low multiplicity of TCR-CD3 ITAMs was sufficient to engage canonical TCR-induced signaling events that led to cytokine secretion, a high multiplicity of TCR-CD3 ITAMs was required for TCR-driven proliferation. This was dependent on the formation of compact immunological synapses, interaction of the adaptor Vav1 with phosphorylated CD3 ITAMs to mediate the recruitment and activation of the oncogenic transcription factor Notch1 and, ultimately, proliferation induced by the cell-cycle regulator c-Myc. Analogous mechanistic events were also needed to drive proliferation in response to weak peptide agonists. Thus, the TCR-driven pathways that initiate cytokine secretion and proliferation are separable and are coordinated by the multiplicity of phosphorylated ITAMs in TCR-CD3.
    Nature Immunology 02/2013; · 26.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Notch signaling pathway activation is known to contribute to the pathogenesis of a spectrum of human malignancies, including T cell leukemia. However, recent studies have implicated the Notch pathway as a tumor suppressor in myeloproliferative neoplasms and several solid tumors. Here we report a novel tumor suppressor role for Notch signaling in acute myeloid leukemia (AML) and demonstrate that Notch pathway activation could represent a therapeutic strategy in this disease. We show that Notch signaling is silenced in human AML samples, as well as in AML-initiating cells in an animal model of the disease. In vivo activation of Notch signaling using genetic Notch gain of function models or in vitro using synthetic Notch ligand induces rapid cell cycle arrest, differentiation, and apoptosis of AML-initiating cells. Moreover, we demonstrate that Notch inactivation cooperates in vivo with loss of the myeloid tumor suppressor Tet2 to induce AML-like disease. These data demonstrate a novel tumor suppressor role for Notch signaling in AML and elucidate the potential therapeutic use of Notch receptor agonists in the treatment of this devastating leukemia.
    Journal of Experimental Medicine 01/2013; · 13.21 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Over the past decade, it has become clear that both genetics and epigenetics play pivotal roles in cancer onset and progression. The importance of epigenetic regulation in proper maintenance of cellular state is highlighted by the frequent mutation of chromatin modulating factors across cancer subtypes. Identification of these mutations has created an interest in designing drugs that target enzymes involved in DNA methylation and posttranslational modification of histones. In this review, we discuss recurrent genetic alterations to epigenetic modulators in both myeloid and lymphoid leukemias. Furthermore, we review how these perturbations contribute to leukemogenesis and impact disease outcome and treatment efficacy. Finally, we discuss how the recent advances in our understanding of chromatin biology may impact treatment of leukemia.
    Advances in Immunology 01/2013; 117:1-38. · 7.26 Impact Factor
  • Luisa Cimmino, Iannis Aifantis
    [Show abstract] [Hide abstract]
    ABSTRACT: In this issue of Cancer Discovery, Geng and colleagues report on their use of a combination of promoter cytosine methylation profiling with gene expression and ChIP sequencing to elucidate molecular signatures of adult B-acute lymphoblastic leukemia patient samples with BCR-ABL1, E2A-PBX1, and MLL rearrangements. The unique epigenetic and gene expression signatures of these clinically unfavorable B-ALL subtypes identify novel biomarkers and provide a strong rationale for repurposing existing therapies to treat these molecularly distinct diseases. Cancer Discov; 2(11); 976-8. ©2012 AACR.
    Cancer Discovery 11/2012; 2(11):976-8. · 10.14 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although transcriptional regulation of stem cell pluripotency and differentiation has been extensively studied, only a small number of studies have addressed the roles for posttranslational modifications in these processes. A key mechanism of posttranslational modification is ubiquitination by the ubiquitin-proteasome system (UPS). Here, using shotgun proteomics, we map the ubiquitinated protein landscape during embryonic stem cell (ESC) differentiation and induced pluripotency. Moreover, using UPS-targeted RNAi screens, we identify additional regulators of pluripotency and differentiation. We focus on two of these proteins, the deubiquitinating enzyme Psmd14 and the E3 ligase Fbxw7, and characterize their importance in ESC pluripotency and cellular reprogramming. This global characterization of the UPS as a key regulator of stem cell pluripotency opens the way for future studies that focus on specific UPS enzymes or ubiquitinated substrates.
    Cell stem cell 10/2012; · 23.56 Impact Factor

Publication Stats

4k Citations
1,449.33 Total Impact Points

Institutions

  • 2009–2014
    • Polytechnic Institute of New York University
      Brooklyn, New York, United States
    • Howard Hughes Medical Institute
      Maryland, United States
  • 2012–2013
    • Memorial Sloan-Kettering Cancer Center
      • Human Oncology & Pathogenesis Program
      New York City, New York, United States
  • 2011
    • Academy of Athens
      Athínai, Attica, Greece
  • 2007–2009
    • New York University
      • Department of Pathology
      New York City, NY, United States
  • 2004–2009
    • University of Chicago
      • • Department of Medicine
      • • Section of Rheumatology
      Chicago, IL, United States
  • 2008
    • CUNY Graduate Center
      New York City, New York, United States
  • 2002–2006
    • Harvard Medical School
      Boston, Massachusetts, United States
  • 2001–2006
    • Dana-Farber Cancer Institute
      • Department of Cancer Immunology and AIDS
      Boston, MA, United States
  • 1999–2000
    • University of Crete
      Retimo, Crete, Greece
  • 1997
    • French Institute of Health and Medical Research
      Lutetia Parisorum, Île-de-France, France