Milind S Patole

National Centre For Cell Science, Pune, Poona, Mahārāshtra, India

Are you Milind S Patole?

Claim your profile

Publications (75)175.83 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Abstract Among the neglected tropical diseases, leishmaniasis is one of the most devastating, resulting in significant mortality and contributing to nearly 2 million disability-adjusted life years. Cutaneous leishmaniasis is a debilitating disorder caused by the kinetoplastid protozoan parasite Leishmania major, which results in disfiguration and scars. L. major genome was the first to be sequenced within the genus Leishmania. Use of proteomic data for annotating genomes is a complementary approach to conventional genome annotation approaches and is referred to as proteogenomics. We have used a proteogenomics-based approach to map the proteome of L. major and also annotate its genome. In this study, we searched L. major promastigote proteomic data against the annotated L. major protein database. Additionally, we searched the proteomic data against six-frame translated L. major genome. In all, we identified 3613 proteins in L. major promastigotes, which covered 43% of its proteome. We also identified 26 genome search-specific peptides, which led to the identification of three novel genes previously not identified in L. major. We also corrected the annotation of N-termini of 15 genes, which resulted in extension of their protein products. We have validated our proteogenomics findings by RT-PCR and sequencing. In addition, our study resulted in identification of 266 N-terminally acetylated peptides in L. major, one of the largest acetylated peptide datasets thus far in Leishmania. This dataset should be a valuable resource to researchers focusing on neglected tropical diseases.
    Omics : a journal of integrative biology. 06/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Lonar crater is an unusually well-preserved meteorite impact structure that is located in one of the largest volcanic provinces on Earth (i.e., the Deccan Traps in India). The diversity of endoliths in Lonar crater basalts or Deccan flood basalts is not known. Here, the phylogenetic diversity of endolithic Bacteria and Archaea inhabiting basalts retrieved from four discrete sampling sites on the Lonar crater walls and the lake-bed was assessed using culture-independent molecular methods. Taxonomic classification of 16S rRNA gene sequences from all four basalt samples revealed similarities as well as dissimilarities in the presence or absence of several prokaryotic taxa. Cluster analysis of Denaturing gradient gel electrophoresis fingerprints and UniFrac analysis of clone library sequences suggested substantial variations in bacterial and archaeal diversity between crater-wall and lake-bed sites. Although sequences affiliated to the bacterial phyla Actinobacteria, Acidobacteria and Chloroflexi were relatively more abundant in crater-wall basalts than in lake-bed basalts; the reverse was observed for sequences related to Proteobacteria, Firmicutes, Cyanobacteria and Bacteroidetes. Archaea in crater-wall and lake-bed basalt libraries were almost completely represented by Thaumarchaeota and Euryarchaeota, respectively. Diversity indices and richness estimates suggested the diversity of endolithic Bacteria to be higher than that of Archaea in the Lonar crater basalts. A substantial number of clone library sequences did not affiliate with extant Bacteria and Archaea. The detection of several putative lineages associated with C, N and S cycling suggests that the Lonar crater basalts are colonized by metabolically diverse prokaryotic communities involved in biogeochemical cycling of major elements.
    Geomicrobiology 01/2014; 31(6). · 1.61 Impact Factor
  • Milsee Mol, Milind S Patole, Shailza Singh
    [Show abstract] [Hide abstract]
    ABSTRACT: Network of signaling proteins and functional interaction between the infected cell and the leishmanial parasite, though are not well understood, may be deciphered computationally by reconstructing the immune signaling network. As we all know signaling pathways are well-known abstractions that explain the mechanisms whereby cells respond to signals, collections of pathways form networks, and interactions between pathways in a network, known as cross-talk, enables further complex signaling behaviours. In silico perturbations can help identify sensitive crosstalk points in the network which can be pharmacologically tested. In this study, we have developed a model for immune signaling cascade in leishmaniasis and based upon the interaction analysis obtained through simulation, we have developed a model network, between four signaling pathways i.e., CD14, epidermal growth factor (EGF), tumor necrotic factor (TNF) and PI3 K mediated signaling. Principal component analysis of the signaling network showed that EGF and TNF pathways can be potent pharmacological targets to curb leishmaniasis. The approach is illustrated with a proposed workable model of epidermal growth factor receptor (EGFR) that modulates the immune response. EGFR signaling represents a critical junction between inflammation related signal and potent cell regulation machinery that modulates the expression of cytokines.
    Systems and Synthetic Biology 12/2013;
  • Milsee Mol, Milind S Patole, Shailza Singh
    [Show abstract] [Hide abstract]
    ABSTRACT: Modulated immune signal (CD14-TLR and TNF) in leishmaniasis can be linked to EGFR pathway involved in wound healing, through crosstalk points. This signaling network can be further linked to a synthetic gene circuit acting as a positive feedback loop to elicit a synchronized intercellular communication among the immune cells which may contribute to a better understanding of signaling dynamics in leishmaniasis. Network reconstruction with positive feedback loop, simulation (ODE 15s solver) and sensitivity analysis of CD14-TLR, TNF and EGFR was done in Simbiology (MATLAB 7.11.1). Cytoscape and adjacency matrix was used to calculate network topology. PCA was extracted by using sensitivity coefficient in MATLAB. Model reduction was done using time, flux and sensitivity score. Network has five crosstalk points: NIK, IkB_NFkB and MKK (4/7, 3/6, 1/2) which shows high flux and sensitivity. PI3K in EGFR pathway show high flux and sensitivity. PCA score was high for cytoplasmic ERK1/2, PI3K, Atk, STAT1/3 and nuclear JNK. Of the 125 parameters, 20% are crucial as deduced by model reduction. EGFR can be linked to CD14-TLR and TNF through the MAPK crosstalk points. These pathways may be controlled through Ras and Raf that lie upstream of signaling components ERK ½ (c) and JNK (n) that have a high PCA score via a synthetic gene circuit for activating cell-cell communication to elicit an inflammatory response. Also a disease resolving effect may be achieved through PI3K in the EGFR pathway. The reconstructed signaling network can be linked to a gene circuit with a positive feedback loop, for cell-cell communication resulting in synchronized response in the immune cell population, for disease resolving effect in leishmaniasis.
    Biochimica et Biophysica Acta 08/2013; · 4.66 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Germ band retraction (GBR) stage is one of the important stages during insect development. It is associated with an extensive epithelial morphogenesis and may also be pivotal in generation of morphological diversity in insects. Despite its importance, only a handful of studies report the transcriptome repertoire of this stage in insects. Here, we report generation, annotation and analysis of ESTs from the embryonic stage (16-22 h post fertilization) of laboratoryreared Anopheles stephensi mosquitoes. A total of 1002 contigs were obtained upon clustering of 1140 high-quality ESTs, which demonstrates an astonishingly low transcript redundancy (12.1 percent). Putative functions were assigned only to 213 contigs (21 percent), comprising mainly of transcripts encoding protein synthesis machinery. Approximately 78 percent of the transcripts remain uncharacterized, illustrating a lack of sequence information about the genes expressed in the embryonic stages of mosquitoes. This study highlights several novel transcripts, which apart from insect development, may significantly contribute to the essential biological complexity underlying insect viability in adverse environments. Nonetheless, the generated sequence information from this work provides a comprehensive resource for genome annotation, microarray development, phylogenetic analysis and other molecular biology applications in entomology.
    Journal of Biosciences 06/2013; 38(2):301-9. · 1.76 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Differences in midgut bacterial communities of Aedes aegypti, the primary mosquito vector of dengue viruses (DENV), might influence the susceptibility of these mosquitoes to infection by DENV. As a first step toward addressing this hypothesis, comparative analysis of bacterial communities from midguts of mosquito strains with differential genetic susceptibility to DENV was performed. 16S rRNA gene libraries and real-time PCR approaches were used to characterize midgut bacterial community composition and abundance in three Aedes aegypti strains: MOYO, MOYO-R, and MOYO-S. Although Pseudomonas spp.-related clones were predominant across all libraries, some interesting and potentially significant differences were found in midgut bacterial communities among the three strains. Pedobacter sp.- and Janthinobacterium sp.-related phylotypes were identified only in the MOYO-R strain libraries, while Bacillus sp. was detected only in the MOYO-S strain. Rahnella sp. was found in MOYO-R and MOYO strains libraries but was absent in MOYO-S libraries. Both 16S rRNA gene library and real-time PCR approaches confirmed the presence of Pedobacter sp. only in the MOYO-R strain. Further, real-time PCR-based quantification of 16S rRNA gene copies showed bacterial abundance in midguts of the MOYO-R strain mosquitoes to be at least 10-100-folds higher than in the MOYO-S and MOYO strain mosquitoes. Our study identified some putative bacteria with characteristic physiological properties that could affect the infectivity of dengue virus. This analysis represents the first report of comparisons of midgut bacterial communities with respect to refractoriness and susceptibility of Aedes aegypti mosquitoes to DENV and will guide future efforts to address the potential interactive role of midgut bacteria of Aedes aegypti mosquitoes in determining vectorial capacity for DENV.
    Parasitology Research 05/2013; · 2.85 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The kinetoplastid protozoan parasite, Leishmania donovani, is the causative agent of kala azar or visceral leishmaniasis. Kala azar is a severe form of leishmaniasis that is fatal in the majority of untreated cases. Studies on proteomic analysis of L. donovani thus far have been carried out using homology-based identification based on related Leishmania species (L. infantum, L. major and L. braziliensis) whose genomes have been sequenced. Recently, the genome of L. donovani was fully sequenced and the data became publicly available. We took advantage of the availability of its genomic sequence to carry out a more accurate proteogenomic analysis of L. donovani proteome using our previously generated dataset. This resulted in identification of 17,504 unique peptides upon database-dependent search against the annotated proteins in L. donovani. These peptides were assigned to 3,999 unique proteins in L. donovani. 2,296 proteins were identified in both the life stages of L. donovani, while 613 and 1,090 proteins were identified only from amastigote and promastigote stages, respectively. The proteomic data was also searched against six-frame translated L. donovani genome, which led to 255 genome search-specific peptides (GSSPs) resulting in identification of 20 novel genes and correction of 40 existing gene models in L. donovani. This article is part of a Special Issue entitled:Trends in Microbial Proteomics. BIOLOGICAL SIGNIFICANCE: Leishmania donovani genome sequencing was recently completed, which permitted us to use a proteogenomic approach to map its proteome and to carry out annotation of it genome. This resulted in mapping of 50% (3,999 proteins) of L. donovani proteome. Our study identified 20 novel genes previously not predicted from the L. donovani genome in addition to correcting annotations of 40 existing gene models. The identified proteins may help in better understanding of stage-specific protein expression profiles in L. donovani and to identify novel stage-specific drug targets in L. donovani which could be used in the treatment of leishmaniasis.
    Journal of proteomics 04/2013; · 5.07 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: Ochrobactrum intermedium is an emerging opportunistic pathogen of humans that is closely related to members of the genus Brucella. Earlier, we reported the case of an Indian subject with non-ulcer dyspeptic symptoms whose urease positive gastric biopsy revealed the presence of Helicobacter pylori along with non-Helicobacter like bacteria, eventually cultured and identified as O. intermedium strain M86. RESULTS: Here, we describe the unclosed draft genome of the strain M86 with a length of 5,188,688 bp and mean G+C content of 57.9%. We have also identified many putative gene clusters that might be responsible for its persistence in the gastric mucosa.Comparative analysis of genomic features of Ochrobactrum intermedium strain M86 and Ochrobactrum intermedium LMG 3301T was also done. CONCLUSIONS: This paper attempts to gain whole-genome based insights into the putative gene determinants of O. intermedium for survival in the highly acidic stomach lumen environment .Identification of genes putatively involved in the various metabolic pathways may lead to a better understanding of the survival of O. intermdedium in acidic condition.
    Gut Pathogens 04/2013; 5(1):7. · 2.74 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Bacillus lentus BI377 (B. lentus BI377) an alkaliphilic strain has accomplished the discriminate color removal strategy for Reactive Red sulfonated azoic recalcitrant irrespective of their molecular structure. During the decolorization experiment, it was observed that the diazo dye first followed chromophoric cleavage by azoreductase via typical azoreduction whereas, in case of monoazo dye, cleavage took place by peroxidase via successive electron transfers to oxide surface resulting in the asymmetric cleavage of the azo bond. Dismutation of oxidative stress by reactive metabolites has confirmed by superoxide dismutase activity. Carbon monoxide (CO) binding spectra, the content of cytochrome P450 and spectroscopy analysis by GCMS, FTIR and (1)H NMR of intermediate metabolites indicated the differentiate pattern of diazo and monoazo dye decolorization fuse to central metabolic pathway. Declined percentage of TOC and the cytotoxicity (MTT) study confirmed that environmentally benign intermediates may lead to mineralization.
    Bioresource Technology 12/2012; 130C:360-365. · 4.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this study fecal microflora of human infants born through vaginal delivery (VB) and through cesarean section (CB) was investigated using culture independent 16S rDNA cloning and sequencing approach. The results obtained clearly revealed that fecal microbiota of VB infants distinctly differ from their counterpart CB infants. The intestinal microbiota of infants delivered by cesarean section appears to be more diverse, in terms of bacteria species, than the microbiota of vaginally delivered infants. The most abundant bacterial species present in VB infants were Acinetobacter sp., Bifidobacterium sp. and Staphylococcus sp. However, CB infant's fecal microbiota was dominated with Citrobacter sp., Escherichia coli and Clostridium difficile. The intestinal microbiota of cesarean section delivered infants in this study was also characterized by an absence of Bifidobacteria species. An interesting finding of our study was recovery of large number of Acinetobacter sp consisting of Acinetobacter pittii (former Acinetobacter genomic species 3), Acinetobacter junii and Acinetobacter baumannii in the VB infants clone library. Among these Acinetobacter baumannii is a known nosocomial pathogen and Acinetobacter pittii (gen. sp. 3) is recently recognized as clinically important taxa within the Acinetobacter calcoaceticus-Acinetobacter baumannii (ACB) complex. Though, none of the infants had shown any sign of clinical symptoms of disease, this observation warrant a closer look.
    Journal of Biosciences 12/2012; 37(6). · 1.76 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this study fecal microflora of human infants born through vaginal delivery (VB) and through cesarean section (CB) were investigated using culture-independent 16S rDNA cloning and sequencing approach. The results obtained clearly revealed that fecal microbiota of VB infants distinctly differ from those in their counterpart CB infants. The intestinal microbiota of infants delivered by cesarean section appears to be more diverse, in terms of bacteria species, than the microbiota of vaginally delivered infants. The most abundant bacterial species present in VB infants were Acinetobacter sp., Bifidobacterium sp. and Staphylococcus sp. However, CB infant's fecal microbiota was dominated with Citrobacter sp., Escherichia coli and Clostridium difficile. The intestinal microbiota of cesarean section delivered infants in this study was also characterized by an absence of Bifidobacteria species. An interesting finding of our study was recovery of large number of Acinetobacter sp. consisting of Acinetobacter pittii (former Acinetobacter genomic species 3), Acinetobacter junii and Acinetobacter baumannii in the VB infants clone library. Among these, Acinetobacter baumannii is a known nosocomial pathogen and Acinetobacter pittii (genomic species 3) is recently recognized as clinically important taxa within the Acinetobacter calcoaceticus-Acinetobacter baumannii (ACB) complex. Although none of the infants had shown any sign of clinical symptoms of disease, this observation warrants a closer look.
    Journal of Biosciences 12/2012; 37(6):989-998. · 1.76 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The gastrointestinal (GI) tract of invasive land snail Achatina fulica is known to harbor metabolically active bacterial communities. In this study, we assessed the bacterial diversity in the different regions of GI tract of Giant African snail, A. fulica by culture-independent and culture-dependent methods. Five 16S rRNA gene libraries from different regions of GI tract of active snails indicated that sequences affiliated to phylum γ-Proteobacteria dominated the esophagus, crop, intestine, and rectum libraries, whereas sequences affiliated to Tenericutes dominated the stomach library. On phylogenetic analysis, 30, 27, 9, 27, and 25 operational taxonomic units (OTUs) from esophagus, crop, stomach, intestine, and rectum libraries were identified, respectively. Estimations of the total bacterial diversity covered along with environmental cluster analysis showed highest bacterial diversity in the esophagus and lowest in the stomach. Thirty-three distinct bacterial isolates were obtained, which belonged to 12 genera of two major bacterial phyla namely γ-Proteobacteria and Firmicutes. Among these, Lactococcus lactis and Kurthia gibsonii were the dominant bacteria present in all GI tract regions. Quantitative real-time polymerase chain reaction (qPCR) analysis indicated significant differences in bacterial load in different GI tract regions of active and estivating snails. The difference in the bacterial load between the intestines of active and estivating snail was maximum. Principal component analysis (PCA) of terminal restriction fragment length polymorphism suggested that bacterial community structure changes only in intestine when snail enters estivation state.
    MicrobiologyOpen. 10/2012;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Obesity is a consequence of a complex interplay between the host genome and the prevalent obesogenic factors among the modern communities. The role of gut microbiota in the pathogenesis of the disorder was recently discovered; however, 16S-rRNA-based surveys revealed compelling but community-specific data. Considering this, despite unique diets, dietary habits and an uprising trend in obesity, the Indian counterparts are poorly studied. Here, we report a comparative analysis and quantification of dominant gut microbiota of lean, normal, obese and surgically treated obese individuals of Indian origin. Representative gut microbial diversity was assessed by sequencing fecal 16S rRNA libraries for each group (n=5) with a total of over 3000 sequences. We detected no evident trend in the distribution of the predominant bacterial phyla, Bacteroidetes and Firmicutes. At the genus level, the bacteria of genus Bacteroides were prominent among the obese individuals, which was further confirmed by qPCR (P less than 0.05). In addition, a remarkably high archaeal density with elevated fecal SCFA levels was also noted in the obese group. On the contrary, the treated-obese individuals exhibited comparatively reduced Bacteroides and archaeal counts along with reduced fecal SCFAs. In conclusion, the study successfully identified a representative microbial diversity in the Indian subjects and demonstrated the prominence of certain bacterial groups in obese individuals; nevertheless, further studies are essential to understand their role in obesity.
    Journal of Biosciences 09/2012; 37(4):647-57. · 1.76 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cellular mechanisms that inhibit mRNA translation by regulatory molecules involving microRNAs (miRNAs), a class of noncoding RNAs (ncRNAs), are well recognized in recent days. However, methodologies that measure these changes in cell populations lack the capabilities to observe such effects at single cell resolution. This is mostly due to the low level of transcript abundance and the heterogeneity of cell populations, together with the inability to measure transcripts and proteins at the same time. Here, we combine an in situ TaqMan PCR method with immunostaining so as to amplify low abundance transcripts in cellular compartments and image these efficiently at single cell resolution. The method offers flexibility to end-users for further fine-tuning of this optimized protocol based on the number of PCR cycles for individual genes in any cell type. After immunostaining, confocal microscopy is performed to detect the fluorescence of TaqMan probes (representing amplified transcripts/miRNA) and fluorophores tagged to antibodies (representing proteins) simultaneously. The presented technique offers an important tool to understand functional genomics as well as molecular mechanism of transcriptional and translational regulation so as to map these at single cell resolution.
    RNA biology 07/2012; 9(7):949-53. · 5.56 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The micro-eukaryotic diversity from the human gut was investigated using universal primers directed towards 18S rRNA gene, fecal samples being the source of DNA. The subjects in this study included two breast-fed and two formula-milk-fed infants and their mothers. The study revealed that the infants did not seem to harbour any microeukaryotes in their gut. In contrast, there were distinct eukaryotic microbiota present in the mothers. The investigation is the first of its kind in the comparative study of the human feces to reveal the presence of micro-eukaryotic diversity variance in infants and adults from the Indian subcontinent. The micro-eukaryotes encountered during the investigation include known gut colonizers like Blastocystis and some fungi species. Some of these micro-eukaryotes have been speculated to be involved in clinical manifestations of various diseases. The study is an attempt to highlight the importance of micro-eukaryotes in the human gut.
    Journal of Biosciences 06/2012; 37(2):221-6. · 1.76 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Members of the genus Wolbachia are intracellular bacteria that are widespread in arthropods and establish diverse symbiotic associations with their hosts, ranging from mutualism to parasitism. Here we present the first detailed analyses of Wolbachia in butterflies from India with screening of 56 species. Twenty-nine species (52%) representing five families were positive for Wolbachia. This is the first report of Wolbachia infection in 27 of the 29 species; the other two were reported previously. This study also provides the first evidence of infection in the family Papilionidae. A striking diversity was observed among Wolbachia strains in butterfly hosts based on five multilocus sequence typing (MLST) genes, with 15 different sequence types (STs). Thirteen STs are new to the MLST database, whereas ST41 and ST125 were reported earlier. Some of the same host species from this study carried distinctly different Wolbachia strains, whereas the same or different butterfly hosts also harbored closely related Wolbachia strains. Butterfly-associated STs in the Indian sample originated by recombination and point mutation, further supporting the role of both processes in generating Wolbachia diversity. Recombination was detected only among the STs in this study and not in those from the MLST database. Most of the strains were remarkably similar in their wsp genotype, despite divergence in MLST. Only two wsp alleles were found among 25 individuals with complete hypervariable region (HVR) peptide profiles. Although both wsp and MLST show variability, MLST gives better separation between the strains. Completely different STs were characterized for the individuals sharing the same wsp alleles.
    Applied and environmental microbiology 06/2012; 78(12):4458-4467. · 3.69 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Members of the genus Wolbachia are intracellular bacteria that are widespread in arthropods and establish diverse symbiotic associations with their hosts, ranging from mutualism to parasitism. Here we present the first detailed analyses of Wolbachia in butterflies from India with screening of 56 species. Twenty-nine species (52%) representing five families were positive for Wolbachia. This is the first report of Wolbachia infection in 27 of the 29 species; the other two were reported previously. This study also provides the first evidence of infection in the family Papilionidae. A striking diversity was observed among Wolbachia strains in butterfly hosts based on five multilocus sequence typing (MLST) genes, with 15 different sequence types (STs). Thirteen STs are new to the MLST database, whereas ST41 and ST125 were reported earlier. Some of the same host species from this study carried distinctly different Wolbachia strains, whereas the same or different butterfly hosts also harbored closely related Wolbachia strains. Butterfly-associated STs in the Indian sample originated by recombination and point mutation, further supporting the role of both processes in generating Wolbachia diversity. Recombination was detected only among the STs in this study and not in those from the MLST database. Most of the strains were remarkably similar in their wsp genotype, despite divergence in MLST. Only two wsp alleles were found among 25 individuals with complete hypervariable region (HVR) peptide profiles. Although both wsp and MLST show variability, MLST gives better separation between the strains. Completely different STs were characterized for the individuals sharing the same wsp alleles.
    Applied and environmental microbiology 04/2012; 78(12):4458-67. · 3.69 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Biology at a cellular level comes with a great amount of heterogeneity. It is now evident that even clonally propagated cells in an in vitro population do not express the same set of cellular epitopes. The vascular endothelial as well as blood cells show a very high degree of heterogeneity in expression of specific proteins. Although several methods exist for identification of genome or transcriptome from a single cell, there is still limited advancement in detection of multiple cellular antigens in a single cell. This has been mainly due to the limited availability of different antibodies. Single-cell detection methods involving the use of multiple monoclonal antibodies generated in the same species would therefore provide with an important tool for cellular detection of antigens. Here, we describe a method to assess multiple proteins in a cell using different antibodies generated in the same species.
    Journal of immunological methods 03/2012; 379(1-2):42-7. · 2.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Visceral leishmaniasis or kala azar is the most severe form of leishmaniasis and is caused by the protozoan parasite Leishmania donovani. There is no published report on L. donovani genome sequence available till date, although the genome sequences of three related Leishmania species are already available. Thus, we took a proteogenomic approach to identify proteins from two different life stages of L. donovani. From our analysis of the promastigote (insect) and amastigote (human) stages of L. donovani, we identified a total of 22,322 unique peptides from a homology-based search against proteins from three Leishmania species. These peptides were assigned to 3711 proteins in L. infantum, 3287 proteins in L. major, and 2433 proteins in L. braziliensis. Of the 3711 L. donovani proteins that were identified, the expression of 1387 proteins was detectable in both life stages of the parasite, while 901 and 1423 proteins were identified only in promastigotes and amastigotes life stages, respectively. In addition, we also identified 13 N-terminally and one C-terminally extended proteins based on the proteomic data search against the six-frame translated genome of the three related Leishmania species. Here, we report results from proteomic profiling of L. donovani, an organism with an unsequenced genome.
    Proteomics 03/2012; 12(6):832-44. · 4.43 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We have carried out a polyphasic taxonomic characterization of Bacillus beijingensis DSM 19037(T) and Bacillus ginsengi DSM 19038(T), which are closely related phylogenetically to Bhargavaea cecembensis LMG 24411(T). All three strains are Gram-stain-positive, non-motile, moderately halotolerant and non-spore-forming. 16S rRNA gene sequence analyses showed that the strains constituted a coherent cluster, with sequence similarities between 99.7 and 98.7 %. The percentage similarity on the basis of amino acid sequences deduced from partial gyrB gene nucleotide sequences of these three type strains was 96.1-92.7 %. Phylogenetic trees based on the 16S rRNA gene and GyrB amino acid sequences, obtained by using three different algorithms, were consistent and showed that these three species constituted a deeply rooted cluster separated from the clades represented by the genera Bacillus, Planococcus, Planomicrobium, Sporosarcina, Lysinibacillus, Viridibacillus, Kurthia and Geobacillus, supporting their placement in the genus Bhargavaea. All three type strains have menaquinone MK-8 as the major respiratory quinone and showed similar fatty acid profiles. The main polar lipids present in the three type strains were diphosphatidylglycerol and phosphatidylglycerol, and the three strains showed peptidoglycan type A4α with l-lysine as the diagnostic diamino acid. The DNA G+C contents of Bacillus beijingensis DSM 19037(T), Bacillus ginsengi DSM 19038(T) and Bhargavaea cecembensis LMG 24411(T) were 53.1, 50.2 and 53.7 mol%, respectively. The level of DNA-DNA hybridization among the three strains was 57-39 %, indicating that they are members of different species of the genus Bhargavaea. The phenotypic data are consistent with the placement of these three species in a single genus and support their differentiation at the species level. On the basis of these data, we have emended the description of the genus Bhargavaea and propose the reclassification of Bacillus beijingensis and Bacillus ginsengi to the genus Bhargavaea, as Bhargavaea beijingensis comb. nov. (type strain ge10(T)  = DSM 19037(T)  = CGMCC 1.6762(T)) and Bhargavaea ginsengi comb. nov. (type strain ge14(T)  = DSM 19038(T)  = CGMCC 1.6763(T)).
    INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY 12/2011; 62(Pt 10):2495-504. · 2.11 Impact Factor

Publication Stats

555 Citations
175.83 Total Impact Points

Institutions

  • 2002–2014
    • National Centre For Cell Science, Pune
      • Molecular Biology Laboratory
      Poona, Mahārāshtra, India
  • 2013
    • Pondicherry University
      Pondichéry, Pondicherry, India
  • 2003–2012
    • University of Pune
      Poona, Mahārāshtra, India
  • 2008
    • South Dakota School of Mines and Technology
      Rapid City, South Dakota, United States